Let's suppose I have two arrays that represent pixels in pictures.
I want to build an array of tensordot products of pixels of a smaller picture with a bigger picture as it "scans" the latter. By "scanning" I mean iteration over rows and columns while creating overlays with the original picture.
For instance, a 2x2 picture can be overlaid on top of 3x3 in four different ways, so I want to produce a four-element array that contains tensordot products of matching pixels.
Tensordot is calculated by multiplying a[i,j] with b[i,j] element-wise and summing the terms.
Please examine this code:
import numpy as np
a = np.array([[0,1,2],
[3,4,5],
[6,7,8]])
b = np.array([[0,1],
[2,3]])
shape_diff = (a.shape[0] - b.shape[0] + 1,
a.shape[1] - b.shape[1] + 1)
def compute_pixel(x,y):
sub_matrix = a[x : x + b.shape[0],
y : y + b.shape[1]]
return np.tensordot(sub_matrix, b, axes=2)
def process():
arr = np.zeros(shape_diff)
for i in range(shape_diff[0]):
for j in range(shape_diff[1]):
arr[i,j]=compute_pixel(i,j)
return arr
print(process())
Computing a single pixel is very easy, all I need is the starting location coordinates within a. From there I match the size of the b and do a tensordot product.
However, because I need to do this all over again for each x and y location as I'm iterating over rows and columns I've had to use a loop, which is of course suboptimal.
In the next piece of code I have tried to utilize a handy feature of tensordot, which also accepts tensors as arguments. In order words I can feed an array of arrays for different combinations of a, while keeping the b the same.
Although in order to create an array of said combination, I couldn't think of anything better than using another loop, which kind of sounds silly in this case.
def try_vector():
tensor = np.zeros(shape_diff + b.shape)
for i in range(shape_diff[0]):
for j in range(shape_diff[1]):
tensor[i,j]=a[i: i + b.shape[0],
j: j + b.shape[1]]
return np.tensordot(tensor, b, axes=2)
print(try_vector())
Note: tensor size is the sum of two tuples, which in this case gives (2, 2, 2, 2)
Yet regardless, even if I produced such array, it would be prohibitively large in size to be of any practical use. For doing this for a 1000x1000 picture, could probably consume all the available memory.
So, is there any other ways to avoid loops in this problem?
tensordot
with 2 is the same as element multiply and sum:A lower-memory way of generating your
tensor
is:We can do a broadcasted multiply, and sum on the last 2 axes: