I'd like to make a scientific calculator in C#, but I didn't find gamma function to calculate fractal factorials. The function's description is below: https://en.wikipedia.org/wiki/Gamma_function
How can I reach gamma function in C#?
I'd like to make a scientific calculator in C#, but I didn't find gamma function to calculate fractal factorials. The function's description is below: https://en.wikipedia.org/wiki/Gamma_function
How can I reach gamma function in C#?
The Math.NET
package is indeed an easy way to get the gamma function. Please keep in mind that gamma(x)
is equal to (x-1)!
. So, gamma(4.1) = 6.813
while 4.1! = 27.932
. To get 4.1!
from gamma(4.1)
, you can multiply gamma(4.1)
by 4.1
, or simply take the gamma of 5.1
instead. (I see no need to show a bunch of digits of precision here.)
In C#:
using MathNet.Numerics; //at beginning of program
private double Factorial(double x)
{
double r = x;
r *= SpecialFunctions.Gamma(x);
return r;
//This could be simplified into:
//return x * SpecialFunctions.Gamma(x);
}
private double Factorial2(double x)
{
double r;
r = SpecialFunctions.Gamma(x + 1);
return r;
}
If for some reason you don't want to use Math.Net
, you can write your own gamma function as follows:
static int g = 7;
static double[] p = {0.99999999999980993, 676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059, 12.507343278686905,
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7};
Complex MyGamma(Complex z)
{
// Reflection formula
if (z.Real < 0.5)
{
return Math.PI / (Complex.Sin(Math.PI * z) * MyGamma(1 - z));
}
else
{
z -= 1;
Complex x = p[0];
for (var i = 1; i < g + 2; i++)
{
x += p[i] / (z + i);
}
Complex t = z + g + 0.5;
return Complex.Sqrt(2 * Math.PI) * (Complex.Pow(t, z + 0.5)) * Complex.Exp(-t) * x;
}
}
Note that you can replace the data type Complex
with double
and the Complex.
functions with Math.
if you don't need complex numbers, like so:
double MyGammaDouble(double z)
{
if (z < 0.5)
return Math.PI / (Math.Sin(Math.PI * z) * MyGammaDouble(1 - z));
z -= 1;
double x = p[0];
for (var i = 1; i < g + 2; i++)
x += p[i] / (z + i);
double t = z + g + 0.5;
return Math.Sqrt(2 * Math.PI) * (Math.Pow(t, z + 0.5)) * Math.Exp(-t) * x;
}
This is from an old wiki page (which has been replaced) but is copied here.
Install the Math.NET package from nuget
Documentation on the Gamma Function : https://numerics.mathdotnet.com/Functions.html