I am trying to find approximate nearest neighbors for a categorical dataset.
For this, I am using MinHashLSH
model present in Spark.
My dataset has categorical data. So I am using StringIndexer
followed by OneHotEncoderEstimator
followed by VectorAssembler
to convert the categorical values into continuous values.
Now I want to find nearest neighbors for a given key from my dataset and this key should be in Vector form. I am unable to find a way to convert a categorical key into a continuous vector.
List<Row> dataA = Arrays.asList(RowFactory.create(0, "apple"),
RowFactory.create(1, "banana"),
RowFactory.create(2, "coconut"));
StructType schema = new StructType(
new StructField[] { new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("fruits", DataTypes.StringType, false, Metadata.empty()) });
Dataset<Row> dfA = spark.createDataFrame(dataA, schema);
StringIndexer stringIndexer = new StringIndexer().setInputCol("fruits").setOutputCol("fruitIndex").setHandleInvalid("keep");
OneHotEncoderEstimator encoder = new OneHotEncoderEstimator().setInputCols(new String[]{"fruitIndex"}).setOutputCols(new String[]{"fruitVec"});
String[] featuredCols = new String[] {"fruitIndex","fruitVec"};
VectorAssembler assembler = new VectorAssembler().setInputCols(featuredCols).setOutputCol("features");
Pipeline sovPipeline = new Pipeline().setStages(new PipelineStage[]{stringIndexer, encoder, assembler});
// Feature Transformation
PipelineModel plModel = sovPipeline.fit(dfA);
Dataset<Row> dfT = plModel.transform(dfA);
MinHashLSH mh = new MinHashLSH().setNumHashTables(5).setInputCol("features").setOutputCol("hashes");
MinHashLSHModel model = mh.fit(dfT);
// model.approxNearestNeighbors(dfT, key, 2).show();
How can I create the key
(numerical continuous vector) for approxNearestNeighbors
method from a categorical key?
The
Vector
you use should be transformed using the same methods as the training data. SincePipeline
model cannot work on single item, the quickest solution is to use a single itemDataset
: