I am trying python implementation of k-dimensional Weisfeiler Lehman. However, I cannot make it work.
This is the code:
def kWL(G, k, verbose=False):
def n_set(G):
V = list(G.nodes())
return list(itertools.combinations(V, k))
def set_initial_colors(n):
# return {i: [hashlib.sha224(str(i).encode('utf-8')).hexdigest()] for i in n}
return {i: [nx.weisfeiler_lehman_graph_hash(G.subgraph(i))] for i in n}
def find_neighbors(V_k, node):
return [n for n in V_k if len(set(n) - set(V_k[V_k.index(node)])) == 1]
def base_WL(G, k, verbose, n_set, initial_colors_func, find_neighbors_func):
N_set = n_set(G)
colors = initial_colors_func(N_set)
old_colors = copy.deepcopy(colors)
for i in range(len(N_set)):
for k_tuple in N_set:
M_neigh_colors = "".join([colors[i][0] for i in find_neighbors_func(N_set, k_tuple)])
# neigh_colors = "".join([old_colors[i][0] for i in find_neighbors_func(G, n, node)])
colors[k_tuple].extend([M_neigh_colors])
colors[k_tuple].sort()
# Update with the hash
colors = {k_tuple_color: [hashlib.sha224("".join(colors[k_tuple_color]).encode('utf-8')).hexdigest()] for k_tuple_color in colors}
if list(Counter([item for sublist in colors.values() for item in sublist]).values()) == list(Counter([item for sublist in old_colors.values() for item in sublist]).values()) and i != 0:
if verbose:
print(f'Converged at iteration {i}!')
break
old_colors = copy.deepcopy(colors)
canonical_form = sorted(Counter([item for sublist in colors.values() for item in sublist]).items())
if verbose:
print(f'Canonical Form Found: \n {canonical_form} \n')
return canonical_form
return base_WL(G, k, verbose, n_set, set_initial_colors, find_neighbors)
I slightly adjusted the not functioning version that I found on: W-L test
For instance, this graph → Example graph when I input it with k=2 should have 4 final colors, the same colors for non-edges {3,2}, {3,0} , then the color for {1,2} and {1,0}, another for {2,0}, and the last for {3,1}.