I am using sympy to evaluate an integral of the form 1/t^p and then lambdify the expression to evaluate it. Evaluated at p=1, the resolution expression should return ln(t), but instead returns a ZeroDivisionError. I expect I will need to expand the solution around p=1. Is that necessary and how does one go about this?
>> expr = integrate(1/t**p,t)
>> expr
Out:
⎧ 1 - p
⎪t
⎪────── for p ≠ 1
⎨1 - p
⎪
⎪log(t) otherwise
⎩
>> lam_expr = lambdify((t,p),expr)
>> lam_expr(10,1)
Traceback (most recent call last):
File "<ipython-input-84-8763c416d5cb>", line 1, in <module>
lam_expr(10,1)
File "<lambdifygenerated-33>", line 2, in _lambdifygenerated
return (select([not_equal(p, 1),True], [t**(1 - p)/(1 - p),log(t)], default=nan))
ZeroDivisionError: division by zero
Update
When using a NumPy array I do not encounter the error though the warning is still issued
>> In: lam_expr(np.array([1,2,3,5]),1)
<lambdifygenerated-101>:2: RuntimeWarning: divide by zero encountered in true_divide
return (select([not_equal(p, 1),True], [t**(1 - p)/(1 - p),log(t)], default=nan))
>> Out: array([0. , 0.69314718, 1.09861229, 1.60943791])
It seems like a (bad) solution to this problem would be to turn all input into NumPy arrays.