A list is defined as follows: [1, 2, 3]
and the sub-lists of this are:
[1], [2], [3],
[1,2]
[1,3]
[2,3]
[1,2,3]
Given K for example 3 the task is to find the largest length of sublist with sum of elements is less than equal to k.
I am aware of itertools
in python but it will result in segmentation fault for larger lists. Is there any other efficient algorithm to achieve this? Any help would be appreciated.
My code is as allows:
from itertools import combinations
def maxLength(a, k):
#print a,k
l= []
i = len(a)
while(i>=0):
lst= list(combinations(sorted(a),i))
for j in lst:
#rint list(j)
lst = list(j)
#print sum(lst)
sum1=0
sum1 = sum(lst)
if sum1<=k:
return len(lst)
i=i-1
Look, for generating the power-set it takes O(2^n) time. It's pretty bad. You can instead use the dynamic programming approach.
Check in here for the algorithm. http://www.geeksforgeeks.org/dynamic-programming-subset-sum-problem/
And yes, https://www.youtube.com/watch?v=s6FhG--P7z0 (Tushar explains everything well) :D