Latent text analysis (lsa package) using whole documents in R

1k Views Asked by At

I have a code that successfully performs Latent Text Analysis on short citations using the lsa package in R (see below). However, I would rather like to use this method on text from larger documents. Copy-pasting the whole thing in each citation space is highly inefficient -- it works, but takes an eternity to run. Is there any way I could directly import each "citation" (in this case, document) from a database or a dataframe? If so, in what format should it be? Txt format documents are automatically separated into paragraphs when imported into R, and I am unsure that this is compatible with the analysis performed by the lsa package.

# Load requisite packages
library(tm)
library(ggplot2)
library(lsa)

# Include citations (THIS IS WHERE I WOULD NEED HELP)
text <- c(
  "To Mr. Ken Lay, I’m writing to urge you to donate the millions of dollars you made from selling Enron stock before the company declared bankruptcy.",
  "while you netted well over a $100 million, many of Enron's employees were financially devastated when the company declared bankruptcy and their retirement plans were wiped out",
  "you sold $101 million worth of Enron stock while aggressively urging the company’s employees to keep buying it",
  "This is a reminder of Enron’s Email retention policy. The Email retention policy provides as follows . . .",
  "Furthermore, it is against policy to store Email outside of your Outlook Mailbox and/or your Public Folders. Please do not copy Email onto floppy disks, zip disks, CDs or the network.",
  "Based on our receipt of various subpoenas, we will be preserving your past and future email. Please be prudent in the circulation of email relating to your work and activities.",
  "We have recognized over $550 million of fair value gains on stocks via our swaps with Raptor.",
  "The Raptor accounting treatment looks questionable. a. Enron booked a $500 million gain from equity derivatives from a related party.",
  "In the third quarter we have a $250 million problem with Raptor 3 if we don’t “enhance” the capital structure of Raptor 3 to commit more ENE shares.")
view <- factor(rep(c("view 1", "view 2", "view 3"), each = 3))
df <- data.frame(text, view, stringsAsFactors = FALSE)

# Prepare corpus
corpus <- Corpus(VectorSource(df$text))
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, function(x) removeWords(x, stopwords("english")))
corpus <- tm_map(corpus, stemDocument, language = "english")
corpus # check corpus


# Compute a term-document matrix that contains occurrance of terms
# Compute distance between pairs of documents and scale the multidimentional semantic space (MDS) onto two dimensions
td.mat <- as.matrix(TermDocumentMatrix(corpus))
dist.mat <- dist(t(as.matrix(td.mat)))
dist.mat  # check distance matrix

# Compute distance between pairs of documents and scale the multidimentional semantic space onto two dimensions
fit <- cmdscale(dist.mat, eig = TRUE, k = 2)
points <- data.frame(x = fit$points[, 1], y = fit$points[, 2])
ggplot(points, aes(x = x, y = y)) + geom_point(data = points, aes(x = x, y = y, color = df$view)) + geom_text(data = points, aes(x = x, y = y - 0.2, label = row.names(df)))
0

There are 0 best solutions below