I am having a 20 4D processed fmri data in folder 'F:\New folder\cn_processed data\Sub1\S1.nii'.Sub1 folder has nifti file S1, similarly 20 folders for each subject. I want to include that data in the code mentioned below. I am new to python and struggling in basics and syntax. Kindly help me.
from monai.transforms import LoadImage
import torch
import os
import time
from multiprocessing import Process, Queue
def read_data(filename,load_root,save_root,subj_name,count,queue=None,scaling_method=None, fill_zeroback=False):
print("processing: " + filename, flush=True)
path = os.path.join(load_root, filename)
try:
# load each nifti file
data, meta = LoadImage()(path)
except:
return None
#change this line according to your file names
save_dir = os.path.join(save_root,subj_name)
isExist = os.path.exists(save_dir)
if not isExist:
os.makedirs(save_dir)
# change this line according to your dataset
data = data[:, 14:-7, :, :]
# width, height, depth, time
# Inspect the fMRI file first using your visualization tool.
# Limit the ranges of width, height, and depth to be under 96. Crop the background, not the brain regions.
# Each dimension of fMRI registered to MNI space (2mm) is expected to be around 100.
# You can do this when you load each volume at the Dataset class, including padding backgrounds to fill dimensions under 96.
background = data==0
if scaling_method == 'z-norm':
global_mean = data[~background].mean()
global_std = data[~background].std()
data_temp = (data - global_mean) / global_std
elif scaling_method == 'minmax':
data_temp = (data - data[~background].min()) / (data[~background].max() - data[~background].min())
data_global = torch.empty(data.shape)
data_global[background] = data_temp[~background].min() if not fill_zeroback else 0
# data_temp[~background].min() is expected to be 0 for scaling_method == 'minmax', and minimum z-value for scaling_method == 'z-norm'
data_global[~background] = data_temp[~background]
# save volumes one-by-one in fp16 format.
data_global = data_global.type(torch.float16)
data_global_split = torch.split(data_global, 1, 3)
for i, TR in enumerate(data_global_split):
torch.save(TR.clone(), os.path.join(save_dir,"frame_"+str(i)+".pt"))
def main():
# change two lines below according to your dataset
dataset_name = 'ABCD'
load_root = '/storage/4.cleaned_image' # This folder should have fMRI files in nifti format with subject names. Ex) sub-01.nii.gz
save_root = f'/storage/7.{dataset_name}_MNI_to_TRs_minmax'
scaling_method = 'z-norm' # choose either 'z-norm'(default) or 'minmax'.
# make result folders
filenames = os.listdir(load_root)
os.makedirs(os.path.join(save_root,'img'), exist_ok = True)
os.makedirs(os.path.join(save_root,'metadata'), exist_ok = True) # locate your metadata file at this folder
save_root = os.path.join(save_root,'img')
finished_samples = os.listdir(save_root)
queue = Queue()
count = 0
for filename in sorted(filenames):
subj_name = filename[:-7]
# extract subject name from nifti file. [:-7] rules out '.nii.gz'
# we recommend you use subj_name that aligns with the subject key in a metadata file.
expected_seq_length = 1000 # Specify the expected sequence length of fMRI for the case your preprocessing stopped unexpectedly and you try to resume the preprocessing.
# change the line below according to your folder structure
if (subj_name not in finished_samples) or (len(os.listdir(os.path.join(save_root,subj_name))) < expected_seq_length): # preprocess if the subject folder does not exist, or the number of pth files is lower than expected sequence length.
try:
count+=1
p = Process(target=read_data, args=(filename,load_root,save_root,subj_name,count,queue,scaling_method))
p.start()
if count % 32 == 0: # requires more than 32 cpu cores for parallel processing
p.join()
except Exception:
print('encountered problem with'+filename)
print(Exception)
if __name__=='__main__':
start_time = time.time()
main()
end_time = time.time()
print('\nTotal', round((end_time - start_time) / 60), 'minutes elapsed.')
How to include my datas in the code.
The easiest way to load a NIfTI image in python would be to use nilearn's load_img function: https://nilearn.github.io/stable/modules/generated/nilearn.image.load_img.html#nilearn.image.load_img
Simply run:
To get the data use the
get_fdata()
method which returns a numpy array:Learn more about nilearn here: https://nilearn.github.io/stable/index.html
PS: If you want to do multiprocessing you may want to look into joblib: https://joblib.readthedocs.io/en/stable/