Is there a dataset that maps each of the ~16M RGB or hex color values to a general color family/category - e.g. red, purple, orange, beige, brown, etc. - that I could access programmatically or load into a database or JSON document to cross-refence the color codes against? The use case is to classify the results of PIL color detection of swatch files into a small set of color pickers for a shopping site. It would also work if the mapping is a bit more granular, say 100-200 categories, since it would be easy enough to map those to my target 10-15 myself. I have some knowledge of kNN classification and will work with that if I have to, but it would be so much easier to use a static mapping if one already exists.
Mapping RGB/hex color codes to general color categories
3.2k Views Asked by KeepingItClassy At
2
There are 2 best solutions below
0

You could convert from RGB to CIE Lab color space wherein Euclidian distance between two color selections is perceptually more meaningful. Here is the link to all relevant color space transformation formulae used in OpenCV's color conversion method (cvtColor): http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html
Since your use case is to compare two swatches, I would advise you to use texture descriptors (http://www.robots.ox.ac.uk/~vgg/research/texclass/with.html) in addition to color information for better results.
You can use a table such as the one in X11
http://www.astrouw.edu.pl/~jskowron/colors-x11/rgb.html
In order to find color proximity, it's best to transform the colors to Lab color space first, so that euclidean distances have more meaning, and then nearest neighbor would give good results.