I discovered an issue in Scalacheck whereby arbitrary[BigDecimal]
would generate BigDecimal
s which could not be converted to String
s and then back into BigDecimal
s, and I'm trying to work with the creator to find a fix for it, but I'm unsure of how the MathContext
s come into play.
The original generator looks like this:
/** Arbitrary BigDecimal */
implicit lazy val arbBigDecimal: Arbitrary[BigDecimal] = {
import java.math.MathContext._
val mcGen = oneOf(UNLIMITED, DECIMAL32, DECIMAL64, DECIMAL128)
val bdGen = for {
x <- arbBigInt.arbitrary
mc <- mcGen
limit <- const(if(mc == UNLIMITED) 0 else math.max(x.abs.toString.length - mc.getPrecision, 0))
scale <- Gen.chooseNum(Int.MinValue + limit , Int.MaxValue)
} yield {
try {
BigDecimal(x, scale, mc)
} catch {
case ae: java.lang.ArithmeticException => BigDecimal(x, scale, UNLIMITED) // Handle the case where scale/precision conflict
}
}
Arbitrary(bdGen)
}
The problem lies within the fact that the BigDecimal
constructor used inverts the sign of the scale
argument, thereby making Int.MinValue
turn into a scale
bigger than 2^32 -1.
scala> val orig = BigDecimal(BigInt("-28334198897217871282176"), -2147483640, UNLIMITED)
orig: scala.math.BigDecimal = -2.8334198897217871282176E+2147483662
scala> BigDecimal(orig.toString)
java.lang.NumberFormatException
at java.math.BigDecimal.<init>(BigDecimal.java:554)
at java.math.BigDecimal.<init>(BigDecimal.java:383)
at java.math.BigDecimal.<init>(BigDecimal.java:806)
at scala.math.BigDecimal$.exact(BigDecimal.scala:125)
at scala.math.BigDecimal$.apply(BigDecimal.scala:283)
... 33 elided
The core of the fix is to increase the lower bound by the number of digits in the unscaledVal
, but I only thought of a way to do it with only MathContext.UNLIMITED
. I fear we miss out on generator robustness if we do that:
lazy val genBigDecimal: Gen[BigDecimal] = for {
unscaledVal <- arbitrary[BigInt]
scale <- Gen.chooseNum(Int.MinValue + unscaledVal.abs.toString.length, Int.MaxValue)
} yield BigDecimal(unscaledVal, scale)
So, if we want to keep using the other MathContext
s, what do we have to do to ensure we use them correctly?