I am trying to build an implementation of a white paper on Dynamic room pricing model for hotel revenue management systems. In case this link dies in the future, i am pasting in the relevant section here:
My current implmentation thus far is quite massively broken, as I really do not fully comprehend how to solve non-linear maximization equations.
# magical lookup table that returns demand based on those inputs
# this will eventually be a db lookup against past years rental activity and not hardcoded to a specific value
def demand(dateFirstNight, duration):
return 1
# magical function that fetches the price we have allocated for a room on this date to existing customers
# this should be a db lookup against previous stays, and not hardcoded to a specific value
def getPrice(date):
return 75
# Typical room base price
# Defined as: Nominal price of the hotel (usually the average historical price)
nominalPrice = 89
# from the white paper, but perhaps needs to be adjusted in the future using the methods they explain
priceElasticity = 2
# this is an adjustable constant it depends how far forward we want to look into the future when optimizing the prices
# likely this will effect how long this will take to run, so it will be a balancing game with regards to accuracy vs runtime
numberOfDays = 30
def roomsAlocated(dateFirstNight, duration)
roomPriceSum = 0.0
for date in range(dateFirstNight, dateFirstNight+duration-1):
roomPriceSum += getPrice(date)
return demand(dateFirstNight, duration) * (roomPriceSum/(nominalPrice*duration))**priceElasticity
def roomsReserved(date):
# find all stays that contain this date, this
def maximizeRevenue(dateFirstNight):
# we are inverting the price sum which is to be maximized because mystic only does minimization
# and when you minimize the inverse you are maximizing!
return (sum([getPrice(date)*roomsReserved(date) for date in range(dateFirstNight, dateFirstNight+numberOfDays)]))**-1
def constraint(x): # Ol - totalNumberOfRoomsInHotel <= 0
return roomsReserved(date) - totalNumberOfRoomsInHotel
from mystic.penalty import quadratic_inequality
@quadratic_inequality(constraint, k=1e4)
def penalty(x):
return 0.0
from mystic.solvers import diffev2
from mystic.monitors import VerboseMonitor
mon = VerboseMonitor(10)
bounds = [0,1e4]*numberOfDays
result = diffev2(maximizeRevenue, x0=bounds, penalty=penalty, npop=10, gtol=200, disp=False, full_output=True, itermon=mon, maxiter=M*N*100)
Can anyone that is familiar with working with mystic give me some advice on how to implement this?
Sorry I'm late to answer this, but I think the accepted answer is not solving the complete problem, and furthermore solving it incorrectly. Note how in the local minimization, solving near nominal price doesn't give the best solution.
Let's first build a
hotel
class:Here's one way to solve it using
mystic
:Results:
Here it is again, using a global optimizer:
Results:
I think for this to yield more reasonable pricing, I'd change
P_bounds
values to something more reasonable.