ML-Agents NN model import into unity throws errors

82 Views Asked by At

I'm currently trying to import my neural network model I made in pytorch into unity. This is the code of my NN:

 import torch
import torch.nn as nn
import onnx

device = "cuda" if torch.cuda.is_available() else "cpu"


class EnhancedMLP(nn.Module):
    def __init__(self, input_size, output_size):
        super(EnhancedMLP, self).__init__()

        # Doubling the number of layers and units
        self.fc1 = nn.Linear(input_size, 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc3 = nn.Linear(256, 256)
        self.fc4 = nn.Linear(256, 256)
        self.fc5 = nn.Linear(256, output_size)

        self.activation = nn.ReLU()

    def forward(self, x):
        output = self.fc5(self.activation(
            self.fc4(self.activation(self.fc3(self.activation(self.fc2(self.activation(self.fc1(x)))))))))
        continuous_action_shape = torch.tensor([2], dtype=torch.int64)  # Assuming 2 continuous actions
        return output, continuous_action_shape


model = EnhancedMLP(input_size=96, output_size=2).to(device)

# set the model to inference mode
model.eval()

# Create a dummy input tensor
dummy_input = torch.randn(1, 96).to(device)

# Export the model to ONNX format
torch.onnx.export(model,                       # model being run
                  dummy_input,                 # model input (or a tuple for multiple inputs)
                  "Albert.onnx",               # where to save the model (can be a file or file-like object)
                  export_params=True,          # store the trained parameter weights inside the model file
                  opset_version=10,             # the ONNX version to export the model to
                  do_constant_folding=True,    # whether to execute constant folding for optimization
                  input_names=['vector_observation'],       # the model's input name
                  output_names=['continuous_actions', 'continuous_action_output_shape'],      # the model's output names
                  dynamic_axes={'vector_observation': {0: 'batch_size'},  # dynamic axis for the input tensor
                                'continuous_actions': {0: 'batch_size'},
                                'continuous_action_output_shape': {0: 'batch_size'}})


# Load the exported ONNX model
torchmodel = onnx.load('Albert.onnx')
graph = torchmodel.graph

# Add the version_number field
version_number = onnx.helper.make_tensor("version_number", onnx.TensorProto.INT64, [1], [3])
graph.initializer.append(version_number)

# Add the version_number to the model's outputs
version_number_info = onnx.helper.make_tensor_value_info("version_number", onnx.TensorProto.INT64, shape=[])
graph.output.append(version_number_info)

# Add the memory_size field
memory_size = onnx.helper.make_tensor("memory_size", onnx.TensorProto.INT64, [1], [0])
graph.initializer.append(memory_size)

# Add the memory_size to the model's outputs
memory_size_info = onnx.helper.make_tensor_value_info("memory_size", onnx.TensorProto.INT64, shape=[])
graph.output.append(memory_size_info)

# Define the continuous_action_output_shape tensor value info
continuous_action_shape_info = onnx.helper.make_tensor_value_info(
    "continuous_action_output_shape",
    onnx.TensorProto.INT64,
    [1]
)

# Add the continuous_action_output_shape to the model's outputs
graph.output.append(continuous_action_shape_info)

# Define and add the actual tensor value for continuous_action_output_shape
continuous_action_shape_tensor = onnx.helper.make_tensor(
    "continuous_action_output_shape",
    onnx.TensorProto.INT64,
    [1],
    [2]  # Assuming 2 continuous actions
)
graph.initializer.append(continuous_action_shape_tensor)

# Save the modified ONNX model
onnx.save(torchmodel, 'ModifiedAlbert.onnx')

print("Model has been converted to ONNX and modified.")

# model.eval()
# dummy_input = torch.randn(1, 96)
# dummy_input = dummy_input.to(device)
# torch.onnx.export(model, dummy_input, "AlbertModelMLP01mod.onnx")

# return torch.tensor([1.0, 0.0]).to(device)

model = onnx.load("Albert.onnx")
print(model.graph.input)  # Check the input tensor names
print(model.graph.output) # Check the output tensor names

This is how it shows up in unity: the NN in the editor in unity I can't figure out the cause of the error, I hope some of you can.

The version of mlagents in unity is 3.0.0, these are the versions in python: cmd, so everything is as up to date as it gets. Do I lack something like f.ex. gym-unity, but when I take the default brain in unity and turn off inference, the training and everything works fine.

0

There are 0 best solutions below