MST Kruskal's Algorithm (Timelimit)

1.4k Views Asked by At

So I had an assignment and I was able to write a code and it works but with big numbers it's just too slow and maybe you can help me improve it, the timelimit is 3s. I would like to hear some ideas. in this assignment we have to find the minimal spanning tree.

the input would be:

  1. number of testcases,
  2. number of nodes,
  3. a number that says how long can tha longest edge be,
  4. all the coordinates of the nodes

then the output should be the min. distance of the MST, if there isn't a MST the output should be -1.

here's an example:

  Input:
    1     //number of testcases
    6 5   //number of nodes, max. length of an edge
    3 6   //x-,y-coordinates
    4 7
    8 1
    4 4
    2 7
    3 3

  Output:
  11

here's the code:

#include<iostream>
#include<cstdio>
#include<string>
#include<algorithm>
#include<deque>
#include<vector>
#include<cmath>
#include<cstdlib>

using namespace std;

#define edge pair<int,int>//format (w,(u,v))
                          //(weights, (node,node))
deque<pair<double,edge> > G,MST;
deque<int> parent(1000);
int N,E,diff;
int total;
double sum;
deque<int> X,Y;

int findset(int x,deque<int>parent){
    if(x!=parent[x])
        parent[x]=findset(parent[x],parent);
    return parent[x];                    
}                                                                    

int Kruskal(){
    for(int i1=0;i1<N;i1++){ //calculate  distance between each node
        for(int j1=i1;j1<N;j1++){
            int A,B;
            double C;
            A=((X[i1]-X[j1])*(X[i1]-X[j1])); 
            B=((Y[i1]-Y[j1])*(Y[i1]-Y[j1]));
            C=sqrt(A+B);
            G.push_back(pair<double,edge>(C,edge(i1,j1)));
         }
    }

    E=G.size();//how many edges
    int i,pu,pv;
    sum=0;
    stable_sort(G.begin(),G.end());  
    for (i=total=0;i<E;i++){
        pu=findset(G[i].second.first, parent);
        pv=findset(G[i].second.second, parent);
        if(pu!=pv){
            MST.push_back(G[i]);
            total+=G[i].first;
            sum+=G[i].first;

            if(G[i].first>diff)
                return -1;
            parent[pu]=parent[pv];
        }
    }
    return 0;
}  

int main(){
    int t,nodes;
    double w;
    diff=0;
    for(cin>>t ; t>0 ; t--){
        N=0;
        diff=0;
        X.clear();
        Y.clear();
        MST.clear();
        G.clear();
        X.resize(0);
        Y.resize(0);

        cin>>N; //how many nodes
        for(int i=0; i<N; i++)
            parent[i]=i;
        cin>>diff;
        nodes=N;

        for(nodes; nodes>0;nodes--){        //coordinates of nodes
            int x,y;
            cin>>x;
            X.push_back(x); 
            cin>>y;
            Y.push_back(y);
        }

        int a=0;
        if(Kruskal()==0){
            a=sum;
            cout<<a<<endl;
        }
        else
            cout<<-1<<endl;           
    }
    system("pause");
    return 0;                                       
}
1

There are 1 best solutions below

0
On

You have implemented a union-find algorithm to figure out if the two vertices incident to the current edge belong to the same component. However, the way you do "union",

parent[pu]=parent[pv];

could lead to linear paths from an element to the root. The proper way to prevent this would be to attach the smaller subtree to the larger one. However, just randomly (uniformly) deciding to do either

parent[pu]=parent[pv];

or

parent[pv]=parent[pu];

should do the trick.