I'm able now to create and teach single layer rnn-s with Chainer, but I run into errors when I try to expand my network. Here is my code, I commented out the 2. hidden layer part, so this should run as a single layer net
#Regression
class Regression(Chain):
def __init__(self, predictor):
super(Regression, self).__init__(predictor=predictor)
def __call__(self, x, t):
y = self.predictor(x)
loss = F.mean_squared_error(y, t)
report({'loss': loss}, self)
return loss
#return loss
#%%
#RNN
class RNN(Chain):
def __init__(self):
super(RNN, self).__init__(
lstm=L.LSTM(12, 50), #
# lstm2=L.LSTM(100, 100),
out=L.Linear(50, 1), #
)
def reset_state(self):
self.lstm.reset_state()
#self.lstm2.reset_state()
def __call__(self, x):
h = self.lstm(x)
# h2 = self.lstm(h)
y = self.out(h2)
return y
Error: unindent does not match any outer indentation level on row : h2 = self.lstm(h)
what Mi doing wrong?
Check if you have mixed your tabs with spaces. Even better, go to your IDE and make your tab to insert spaces automatically. Otherwise, this code runs fine (after I import everything)