The function works fine with only positive number. Works sometimes with negative but most of the time show this error "The value -1 is not of type UNSIGNED-BYTE".
(defun OrdRapido (lista inf sup)
(let ((pivote (nth sup lista)) (i (1- inf)) (j sup) (aux))
(unless (>= inf sup)
(loop (when (>= i j) (return))
(loop (setf i (1+ i)) (when (>= (nth i lista) pivote) (return)))
(loop (setf j (1- j)) (when (<= (nth j lista) pivote) (return)))
(when (< i j)
(setf aux (nth i lista))
(setf (nth i lista) (nth j lista))
(setf (nth j lista) aux)))
(setf aux (nth i lista))
(setf (nth i lista) (nth sup lista))
(setf (nth sup lista) aux)
(OrdRapido lista inf (1- i))
(OrdRapido lista (1+ i) sup))
lista))
For example:
(setq lista2 '(-5 3 7 6 2 1 -4 100 5 80 96 14 2 3 1 0 0 789 -1 3))
(OrdRapido lista2 0 (1- (length lista2)))
CL-USER>
(-5 3 7 6 2 1 -4 100 5 80 96 14 2 3 1 0 0 789 -1 3)
CL-USER>
(-5 -4 -1 0 0 1 1 2 2 3 3 3 5 6 7 14 80 96 100 789)
But doesn't work with this, and I only add the - to 80
'(-5 3 7 6 2 1 -4 100 5 -80 96 14 2 3 1 0 0 789 -1 3)
Thanks
Corrected version (random pivot added), I know there are better ways, It's just an exercise the profesor left
(defun OrdRapido (lista inf sup)
(let ((pivote (nth (random (1+ sup)) lista)) (i inf) (j sup) (aux))
(unless (>= inf sup)
(loop (when (> i j) (return))
(loop (when (<= (nth i lista) pivote) (return)) (setf i (1+ i)))
(loop (when (>= (nth j lista) pivote) (return)) (setf j (1- j)))
(when (<= i j)
(setf aux (nth i lista))
(setf (nth i lista) (nth j lista))
(setf (nth j lista) aux)
(setf i (1+ i))
(setf j (1- j))))
(OrdRapido lista inf j)
(OrdRapido lista i sup))
lista))
You are trying to return the -1th element of a list which won't work. nth returns the nth element of the list so (nth 0 '(1 2 3)) will return 1. But at some point in your code it calls (nth -1 (-5 -80 -4 -1 0 0 ...)) and boom!
Other notes about your code:
Also please look at the rosettacode page for quicksort to see how to do it in common-lisp (and lots of other languages).
If you are not used to reading lambdas then here is the same code as above but with the lambdas made into local functions so the code reads a little more like english.
The second version is a little less tidy in my mind. In both of these examples you can see how the recursive approach lets you think about how to do just one step and then by calling itself you apply the solution for one step to get the solution to the entire problem