img_height,img_width = 32, 32
base_model = ResNet50(weights = 'imagenet', include_top = False, input_shape =(img_height,img_width,3))
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.7)(x)
predictions = Dense(num_classes, activation = 'softmax')(x)
model = Model(inputs = base_model.input, outputs = predictions)
model.compile(optimizer = Adam(), lr = 0.0001, loss = 'categorical_crossentropy', metrics = ['accuracy'])
model.fit(X_train, y_train, epochs = 20, batch_size = 128)
I'm trying a image_classification task on CIFAR-10 dataset using Resnet. I'm using colab CPU with TensorFlow version 2.5.0.
I'm getting this error in "model.fit" lines:
InvalidArgumentError: Node 'training/Adam/gradients/gradients/conv5_block3_3_bn/cond_grad/StatelessIf': Connecting to invalid output 3 of source node conv5_block3_3_bn/cond which has 3 outputs. Try using tf.compat.v1.experimental.output_all_intermediates(True).
I am able to execute code without any issues on colab using TF2.5
Output: