I'm trying to resolve a nonlinear PDE Schrödinger equation with the split-step Fourier pseudo-spectral method. The fonction "solver" is supposed to solve the time and space dependant equation with the split-step method but it gives values oscillating between 0.49 and 0.51 instead of the good answer which is between 0 and 1.657 (see here). What should I change to get the good result?
import numpy as np
from matplotlib import pyplot as plt
i = np.complex(0,1)
K = 1
dt = 0.01 #temps
t = np.arange(0,20,dt)
N = 1024#espace
x = np.linspace(-20,20,N) #domaine truncated
L = 40
dx = L/N
k =np.linspace(-N/2,N/2-1,N)
def solver(x,t):
F = []
psi = 0.5 +0.01*np.cos(2*np.pi*x/40)
for l in range(len(t)):
g = np.exp(-i*K*(np.abs(psi))*dt)*psi
fg = np.fft.fftshift((np.fft.fft(g)))
fpsi = np.exp(-i/2*(2*np.pi*k/L)**2*dt)*fg
psi = np.fft.ifft(fpsi)
F.append(psi)
return F
M = np.abs(solver(x,t))
print(M)
#plt.plot(x,M)
#plt.show()
fig = plt.figure(figsize=(10,10))
ax1 = fig.add_subplot()
m1 = ax1.matshow(M)
plt.title("")
fig.colorbar(m1)
ax1.set_xlabel('espace')
ax1.set_ylabel('temps')