(UPDATED)
We need to find the number of ways a given string can be formed from a matrix of characters.
We can start forming the word from any position(i, j) in the matrix and can go in any unvisited direction from the 8 directions available across every cell(i, j) of the matrix, i.e
(i + 1, j)
(i + 1, j + 1)
(i + 1, j - 1)
(i - 1, j)
(i - 1, j + 1)
(i - 1, j - 1)
(i, j + 1)
(i, j - 1)
Sample test cases:
(1) input:
N = 3 (length of string)
string = "fit"
matrix: fitptoke
orliguek
ifefunef
tforitis
output: 7
(2) input:
N = 5 (length of string)
string = "pifit"
matrix: qiq
tpf
pip
rpr
output: 5
Explanation:
num of ways to make 'fit' are as given below:
(0,0)(0,1)(0,2)
(2,1)(2,0)(3,0)
(2,3)(1,3)(0,4)
(3,1)(2,0)(3,0)
(2,3)(3,4)(3,5)
(2,7)(3,6)(3,5)
(2,3)(1,3)(0,2)
I approach the solution as a naive way, go to every possible position (i,j) in the matrix and start forming the string from that cell (i, j) by performing DFS search on the matrix and add the number of ways to form the given string from that pos (i, j) to total_num_ways variable.
pseudocode:
W = 0
for i : 0 - n:
for j: 0 - m:
visited[n][m] = {false}
W += DFS(i, j, 0, str, matrix, visited);
But it turns out that this solution would be exponential in time complexity as we are going to every possible n * m position and then traversing to every possible k(length of the string) length path to form the string.
How can we improve the solution efficiency?
Instead of expanding the paths from every coordinate of the matrix, the matrix can first be iterated over to find all the (i,j) coordinates that have the same letter as the first letter from the goal string. This takes O(n^2) time.
Then, for each (i,j) coordinate found which contained the first letter from the goal string, expand the paths from there by searching for the second letter from the goal string and expand only the paths that match the second letter. This action is repeated for each letter in the goal string to recursively find all valid paths from the starting coordinates.