I have a problem with the following function in R:
test <- function(alpha, beta, n){
result <- exp(lgamma(alpha) + lgamma(n + beta) - lgamma(alpha + beta + n) - (lgamma(alpha) + lgamma(beta) - lgamma(alpha + beta)))
return(result)
}
Now if you insert the following values:
betabinom(-0.03292708, -0.3336882, 10)
It should fail and result in a NaN. That is because if we implement the exact function in Excel, we would get a result that is not a number. The implementation in Excel is simple, for J32 is a cell for alpha, K32 beta and L32 for N. The implementation of the resulting cell is given below:
=EXP(GAMMALN(J32)+GAMMALN(L32+K32)-GAMMALN(J32+K32+L32)-(GAMMALN(J32)+GAMMALN(K32)-GAMMALN(J32+K32)))
So this seems to give the correct answer, because the function is only defined for alpha and beta greater than zero and n greater or equal to zero. Therefore I am wondering what is happening here? I have also tried the package Rmpf to increase the numerical accuracy, but that does not seem to do anything.
Thanks
tl;dr log(gamma(x)) is defined more generally than you think, or than Excel thinks. If you want your function not to accept negative values of
alphaandbeta, or to returnNaN, just test manually and return the appropriate values (if (alpha<0 || beta<0) return(NaN)).It's not a numerical accuracy problem, it's a definition issue. The Gamma function is defined for negative real values:
?lgammasays:Furthermore, referring to
lgamma...(emphasis in original)
Wolfram Alpha agrees with second calculation.