numpy.add.at slower than in-place add?

1k Views Asked by At

Proceeding from one of my earlier posts, I noticed that the operation np.add.at(A, indices, B) is a lot slower than A[indices] += B.

def fast(A):
    n = A.shape[0]
    retval = np.zeros(2*n-1)
    for i in range(n):
        retval[slice(i,i+n)] += A[i, :]
    return retval
def slow(A):
    n = A.shape[0]
    retval = np.zeros(2*n-1)
    for i in range(n):
        np.add.at(retval, slice(i,i+n), A[i, :])
    return retval
def slower(A):
    n = A.shape[0]
    retval = np.zeros(2*n-1)
    indices = np.arange(n)
    indices = indices[:,None] + indices
    np.add.at(retval, indices, A) # bottleneck here
    return retval

My timings:

A = np.random.randn(10000, 10000)

timeit(lambda: fast(A), number=10) # 0.8852798199995959
timeit(lambda: slow(A), number=10) # 56.633683917999406
timeit(lambda: slower(A), number=10) # 57.763389584000834

Clearly, using the __iadd__ is a lot faster. However, the documentation for np.add.at states:

Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc, this method is equivalent to a[indices] += b, except that results are accumulated for elements that are indexed more than once.


Why is np.add.at so slow?

What is the use-case for this function?

2

There are 2 best solutions below

1
On BEST ANSWER

add.at was intended for cases where indices contain duplicates and += does not produce the desired result

In [44]: A = np.zeros(5,int); idx = np.array([0,1,1,2,2,2,3,3,3,3])
In [45]: A[idx]+=1
In [46]: A
Out[46]: array([1, 1, 1, 1, 0])    # the duplicates in idx are ignored

With add.at:

In [47]: A = np.zeros(5,int); idx = np.array([0,1,1,2,2,2,3,3,3,3])
In [48]: np.add.at(A, idx, 1)
In [49]: A
Out[49]: array([1, 2, 3, 4, 0])

Same result as with an explicit iteration:

In [50]: A = np.zeros(5,int); idx = np.array([0,1,1,2,2,2,3,3,3,3])
In [51]: for i in idx: A[i]+=1
In [52]: A
Out[52]: array([1, 2, 3, 4, 0])

Some timings:

In [53]: %%timeit A = np.zeros(5,int); idx = np.array([0,1,1,2,2,2,3,3,3,3])
    ...: A[idx]+=1
3.65 µs ± 13.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [54]: %%timeit A = np.zeros(5,int); idx = np.array([0,1,1,2,2,2,3,3,3,3])
    ...: np.add.at(A, idx, 1)
6.47 µs ± 24.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [55]: %%timeit A = np.zeros(5,int); idx = np.array([0,1,1,2,2,2,3,3,3,3])
    ...: np.add.at(A, idx, 1)
    ...: for i in idx: A[i]+=1
15.6 µs ± 41.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

add.at is slower than += but better than the python iteration.

We could test variants such as A[:4]+1, A[:4]+=1, etc.

Anyways, don't use the add.at variant if you don't need it.

edit

Your example, simplified a bit:

In [108]: x = np.zeros(2*10-1)
     ...: for i in range(10):
     ...:     x[i:i+10] += 1
     ...: 
In [109]: x
Out[109]: 
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.,  9.,  8.,  7.,
        6.,  5.,  4.,  3.,  2.,  1.])

So you are adding values to overlapping slices. We could replace the slices with an array:

In [110]: x = np.zeros(2*10-1)
     ...: for i in range(10):
     ...:     x[np.arange(i,i+10)] += 1
     ...: 
In [111]: x
Out[111]: 
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.,  9.,  8.,  7.,
        6.,  5.,  4.,  3.,  2.,  1.])

No need to add your 'slow' case, add.at with slices because the indices don't have duplicates.

Creating all the indexes. += does not work because of buffering

In [112]: idx=np.arange(10); idx=(idx[:,None]+idx).ravel()
In [113]: y=np.zeros(2*10-1)
     ...: y[idx]+=1
In [114]: y
Out[114]: 
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1.])

add.at solves that:

In [115]: y=np.zeros(2*10-1)
     ...: np.add.at(y, idx, 1)
In [116]: y
Out[116]: 
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.,  9.,  8.,  7.,
        6.,  5.,  4.,  3.,  2.,  1.])

And the full python iteration:

In [117]: y=np.zeros(2*10-1)
     ...: for i in idx: y[i]+=1
In [118]: 
In [118]: y
Out[118]: 
array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.,  9.,  8.,  7.,
        6.,  5.,  4.,  3.,  2.,  1.])

Now some timings.

The base line:

In [119]: %%timeit
     ...: x = np.zeros(2*10-1)
     ...: for i in range(10):
     ...:     x[i:i+10] += 1
     ...: 
50.5 µs ± 177 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Advanced indexing slows this down some:

In [120]: %%timeit
     ...: x = np.zeros(2*10-1)
     ...: for i in range(10):
     ...:     x[np.arange(i,i+10)] += 1
     ...: 
75.2 µs ± 79.9 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

If it worked, one advanced-indexing += would be fastest:

In [121]: %%timeit
     ...: idx=np.arange(10); idx=(idx[:,None]+idx).ravel()
     ...: y=np.zeros(2*10-1)
     ...: y[idx]+=1
     ...: 
     ...: 
17.5 µs ± 693 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Full python iteration is about the same as the looped arange case:

In [122]: %%timeit
     ...: idx=np.arange(10); idx=(idx[:,None]+idx).ravel()
     ...: y=np.zeros(2*10-1)
     ...: for i in idx: y[i]+=1
     ...: 
     ...: 
76.3 µs ± 2.51 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

add.at is slower than the flat +=, but still better than the base line:

In [123]: %%timeit
     ...: idx=np.arange(10); idx=(idx[:,None]+idx).ravel()
     ...: y=np.zeros(2*10-1)
     ...: np.add.at(y, idx,1)
     ...: 
     ...: 
29.4 µs ± 21.2 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In my smaller test, your slower does best. But it's possible that it does not scale as well as base/fast. Your indices is much larger. Often for very large arrays, iteration on one dimension is faster due to reduced memory management load.

0
On

I also had issues with np.add.at being slow. I ended up writing my own version based on sorting:

def add_at(A, indices, B):
    sorted_indices = np.argsort(indices)
    uniques, run_lengths = np.unique(indices[sorted_indices], return_counts=True)
    for i, length, end in zip(uniques, run_lengths, run_lengths.cumsum()):
        A[i] += B[sorted_indices[end-length:end]].sum(axis=0)

For small arrays this is slower than np.add.at, but for large arrays it's 20 times faster or more.

Small benchmark:

n, m, d = 5, 10, 3
A = np.zeros((n, d))
B = np.random.randn(m, d)
indices = np.random.randint(n, size=m)

%timeit np.add.at(A, indices, B)
7.6 µs ± 16 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
%timeit add_at(A, indices, B)
82.9 µs ± 2.2 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

Large benchmark:

n, m, d = 10**3, 10**6, 10**2
...
%timeit np.add.at(A, indices, B)
10.2 s ± 42.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit add_at(A, indices, B)
509 ms ± 50.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

There's also a common pattern, which is simple and faster than np.add.at, though it's still slower the the sorting approach:

def add_at_ind(A, indices, B):
    for i in np.unique(indices):
        A[i] += B[indices == i].sum(axis=0)
# Small
%timeit add_at_ind(A, indices, B)
56.1 µs ± 1.28 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
# Large
%timeit add_at_ind(A, indices, B)
3.3 s ± 101 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)