Im training a MobilenetSSD_v2 object detector (pretrained on COCO dataset) using TensorFlow Object Detection API.
The model is working ok, however the confidences of the output boxes is pretty weird:
Here is my config file:
model { ssd {
num_classes: 5
image_resizer {
fixed_shape_resizer {
height: 270
width: 480
}
}
feature_extractor {
type: "ssd_mobilenet_v2"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
use_depthwise: true
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
box_predictor {
convolutional_box_predictor {
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: true
dropout_keep_probability: 0.800000011921
kernel_size: 3
box_code_size: 4
apply_sigmoid_to_scores: false
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.15
max_scale: 0.949999988079
aspect_ratios: 0.1
aspect_ratios: 0.2
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 5.0
aspect_ratios: 10.0
}
}
post_processing {
batch_non_max_suppression {
score_threshold: 0.4
iou_threshold: 0.000001
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
normalize_loss_by_num_matches: true
loss {
localization_loss {
weighted_smooth_l1 {
}
}
classification_loss {
weighted_sigmoid {
}
}
hard_example_miner {
num_hard_examples: 10
iou_threshold: 0.7
loss_type: CLASSIFICATION
max_negatives_per_positive: 1
min_negatives_per_image: 1
}
classification_weight: 0.9
localization_weight: 1.0
} }}
train_config {
batch_size: 32
optimizer {
adam_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.0003
decay_steps: 1000
decay_factor: 0.95
}
}
}
use_moving_average: false
}
fine_tune_checkpoint: "ssd_mobilenet_v2_coco/model.ckpt"
num_steps: 10000
fine_tune_checkpoint_type: "detection"
}...
Does anyone have an idea what can couse such behaviour? And why doesnt i get values smaller then 0.4, or higher then 0.6?