I'm trying to solve and fit these coupled Differential equations with Symfit. I've tried following the documentation for ODE fitting, looked at this answer to a similar question and searched the error in other contexts, but without any luck. My code is supposed be used on experimental data, but as a start I've just created somewhat similar data. The relevant code is:
#Imports
import numpy as np
import matplotlib.pyplot as plt
from symfit import variables, parameters, Parameter, Fit, D, ODEModel, cos, sin, atan, asin, sqrt
#Constants
m = 0.01 #Unit: kg - Mass of object
mt = 0.5 * m #Unit: kg - Related to moment of inertia (\tilde{m] in the equations)
R = 0.1 #Unit: m - Radius of object
g = 9.82 #Unit: m/s^2 - gravitational acceleration
#Variables and parameters
x_1,x_2,x_3,x_4, t = variables("x_1,x_2,x_3,x_4, t") #x-position, y-position, x-velocity, y-velocity, time
p = Parameter("p", min=1, max=4)
c, d = parameters("c,d") #d is \gamma in the equations
#Generate proxy data
t_vals = np.linspace(0,10,100) #Choosen time interval
x1_data = 8*np.sin(0.15*t_vals)+7*t_vals #x-data proxy
x2_data = 10*np.sin(0.15* t_vals)-2*t_vals #y-data proxy
x3_data = 0.15*8*np.cos(0.15*t_vals)-7 #vx-data proxy
x4_data = 0.15*10*np.cos(t_vals)-2 #vy-data proxy
#Model
model_dict = {
D(x_1, t) : x_3,
D(x_2, t) : x_4,
D(x_3, t) : -d/mt * (x_3**2 + x_4**2)**((p-1)/2) * x_3 + c*(x_3**2+x_4**2)/(mt*R) * cos(atan(x_1/x_2) + asin(R/sqrt(x_1**2+x_2**2))),
D(x_4, t) : -d/mt * (x_3**2 + x_4**2)**((p-1)/2) * x_4 + c*(x_3**2+x_4**2)/(mt*R) * sin(atan(x_1/x_2) + asin(R/sqrt(x_1**2+x_2**2)))+m/mt * g,
}
ode_model = ODEModel(model_dict, initial={t: 0.0, x_1: 0, x_2: 3, x_3: 0, x_4: 1})
fit = Fit(ode_model, t=tdata, x_1=x1_data, x_2=x2_data, x_3=x3_data, x_4=x4_data)
fit_result = fit.execute()
But I get the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-8-ef065dc7aeb9> in <module>
27
28 fit = Fit(ode_model, t=tdata, x_1=x1_data, x_2=x2_data, x_3=x3_data, x_4=x4_data)
---> 29 fit_result = fit.execute()
30
31 t_vec = np.linspace(0,10,1000)
[...]
ValueError: operands could not be broadcast together with remapped shapes [original->remapped]: (5,) and requested shape (100,)
I'm rather inexperienced in using Symfit, but I suppose the two arrays the error is referring to, is the five variables and the 100 datapoints each of them have. I have no idea what causes this error, except maybe a lack of initial guesses and badly generated data. The problem simply was that I used the wrong time array
EDIT: As user mikuszefski pointed out, I had used tdata
where t_vals
should've been used. This solved my initial error. The same user also correctly predicted numerical troubles, as some fitted values are of magnitude 10^300. I will edit my post once I find a solution.
I have also written my imports and defined g
.