I have a custom enviorment:
class PlacementEnv(gym.Env)
def __init__(self, sb, bb):
self.reward = None
self.smallBoxes = sb
self.bigBoxes = bb
# Define the observation space
i = 1
space_to_observe = {}
for smallbox in self.smallBoxes:
highx = smallbox.pointMax_X
highy = smallbox.pointMax_Y
space_single_smallbox = {
'points_smallbox' + str(i): gym.spaces.Box(low=np.array([0, 0]), high=np.array([highx, highy]),
shape=(2,), dtype=int),
'bbID_smallbox' + str(i): gym.spaces.Discrete(len(self.bigBoxes))}
space_to_observe = space_to_observe | space_single_smallbox
i = i+1
dict_space = gym.spaces.Dict(space_to_observe)
self.observation_space = dict_space
# Define action space
self.action_space = spaces.Tuple((
spaces.Discrete(len(self.bigBoxes)),
spaces.Box(low=0, high=3000, shape=(2,), dtype=int),
spaces.Discrete(8))
))
def reset(self):
i = 0
space_to_observe = {}
for smallbox in self.smallBoxes:
smallbox.bb_id = None
smallbox.insertion_point = (0, 0)
smallbox.rotation_angle = 0
highx = smallbox.pointMax_X
highy = smallbox.pointMax_Y
space_single_smallbox = {
'points_smallbox' + str(i): gym.spaces.Box(low=np.array([0, 0]), high=np.array([highx, highy]),
shape=(2,), dtype=int),
'bbID_smallbox' + str(i): gym.spaces.Discrete(len(self.bigBoxes))}
space_to_observe = space_to_observe | space_single_smallbox
i = i+1
dict_space = gym.spaces.Dict(space_to_observe)
self.observation_space = dict_space
return self.observation_space
When I run the code I get the following error:
AssertionError: ERROR: `elem` (Box(0, 2, (2,), int16)) must be np.array, float or int!
I don't understand why this error comes up. I cannot see any clear hint.
Info: for everyone this code seems familiar to. This is from my post yesterday which I have deleted now as I made a couple of progress (I think :-) )
I am absolute beginner to Python and OpenAI Gym. This is my first project.
Thanks for any helpful reply. Edit: Sorry, everytime I want to start with "Hi" or "Hi guys" it is cutoff when I post the question. Don't want to be not polite! :) I searched the internet without success
The problem is that
reset
should return the initial observation from the environment--not the observation space itself. So you should either return a valid observation informed by your problem or you could do something likereturn self.observation_space.sample()