While solving an OMR problem I am not completely able to detect all the marked answers correctly.
Here is my input sheet.
Input Image
my code to Binarize the image.
import cv2
image = cv2.imread('input.png')
img = cv2.GaussianBlur(image,(5,5),0)
res, img = cv2.threshold(img, 60, 255, cv2.THRESH_BINARY)
img = 255 - img
cv2.imwrite('output.png',img)
Result I am getting.
Output generated
I have changed the gaussian blur and threshold parameters as follow.
img = cv2.GaussianBlur(image,(7,7),0)
res, img = cv2.threshold(img, 90, 255, cv2.THRESH_BINARY)
The result I am getting after this change.
Result after changing Parameters
My Desired result should look something like this. Desired Result
Here is my complete code to detect the answers.
def solve(img,n_row = 50):
height, width, channels = img.shape
n_col = 4
xShift = int(width/n_col)
yShift = int(height/n_row)
img = cv2.resize(img, (n_col * xShift, n_row*yShift))
img = cv2.GaussianBlur(img,(5,5),0)
res, img = cv2.threshold(img, 60, 255, cv2.THRESH_BINARY)
img = 255 - img
for row in range(0, n_row):
tmp_img = img [row*yShift + 5:(row+1)*yShift - 5,]
area_sum = []
for col in range(n_col):
area_sum.append(np.sum(tmp_img[1:,col*xShift :(col+1)*xShift]))
y = str(area_sum > np.median(area_sum) * 1)
result.append(area_sum > np.median(area_sum) * 5)
Please If anyone can help me solving this problem I will be super thankful.
Answer Suggestions:
How can I Check out the white pixel count inside each bounding rectangle and keep only those bounding rectangles/contours whose area is above a minimum value.
inputImg= cv2.imread('input.jpg')
img = cv2.cvtColor(inputImg, cv2.COLOR_BGR2GRAY)
mask = np.zeros(img.shape[:2], dtype=img.dtype)
ret, otsu_threshold = cv2.threshold(img, 120, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(otsu_threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
x,y,w,h = cv2.boundingRect(c)
if cv2.contourArea(c) > 1500:
cv2.rectangle(otsu_threshold, (x, y), (x+w, y+h), (0,255,0), 2)
cv2.imshow('Otsu', otsu_threshold)
cv2.waitKey(0)
Here is one way to do that in Python/OpenCV.
Input:
Threshold Image:
Morphology Image:
Results:
Answers:
ADDITION:
This solution is probably less sensitive to color of ink. Just threshold on white using cv2.inRange() then invert.
Threshold Image:
Morphology Image:
Result:
Centers: