I have a csv file which has dates in multiple formats like this:
Date X1 X2
12/6/2017 23:00 928.88 3.19
12/6/2017 23:20 928.86 3.37
12/6/2017 23:40 930.26 3.38
13-06-17 0:00 930.37 3.41
13-06-17 0:20 930.39 3.49
13-06-17 0:40 930.15 3.54
13-06-17 1:00 930.36 3.46
I wanted to parse the dates but the format is different:
I tried:
date_formats = ["%d/%m/%Y %H:%M","%d-%m-%Y %H:%M"]
for x in date_formats:
try:
dateparse = lambda dates: datetime.strptime(dates, x)
except ValueError:
dateparse = lambda dates: datetime.strptime(dates, x)
df2 = read_csv("Copy.csv", parse_dates=True,
index_col="Time", date_parser=dateparse)
But i am getting the format errors.
ValueError: time data '5/6/2017 0:00' does not match format '%d-%m-%Y %H:%M'
Is there any other way to parse different date formats of csv files? Any help would be appreciated.
the built in dateparser in
pandas
is man/woman enough to handle this already, so just pass paramparse_dates=[0]
to tellread_csv
to parse the first column as datetimes, additionally you need to passdayfirst=True
: