I want to add a modification factor to an existing equation to fit data. The original equation is defined through a function because the variable N_l
is a vector of numbers and the function is selecting the largest outcome of the equation by going through all possible values in the vector N_l
. The original function is defined as:
library(utils)
R <- function(x){
N_b <- x[1]
N_l <- x[2]
A <- x[3]
x.sqr <- x[4]
S <- x[10]
e <- x[grepl("e_\\d",names(x))]
f <- sapply(seq(N_l),function(k) max(Multi.Presence$m[k] * ((k/N_b) +
(A * combn(e,k,sum) / x.sqr))))
c(val = max(f), pos = which.max(f))
}
DATA.GIRDER1 <- cbind(DATA.GIRDER1, vars = t(apply(DATA.GIRDER1, 1, R)))
colnames(DATA.GIRDER1)[12:13] <- c("Proposed.Girder1","Lanes")
The equation defines in the function is:
The first 5 rows of the dataframe DATA.GIRDER1
and dataframe Multi.Presence
are provided:
> dput(DATA.GIRDER1[(1:5),]
structure(list(N_b = c(5, 5, 5, 5, 5), N_l = c(4, 4, 4, 4, 4),
A = c(-12, -12, -12, -12, -12), x.sqr = c(1440, 1440,
1440, 1440, 1440), e_1 = c(21.8, 21.8, 21.8, 21.8, 21.8),
e_2 = c(9.8, 9.8, 9.8, 9.8, 9.8), e_3 = c(-2.2, -2.2, -2.2,
-2.2, -2.2), e_4 = c(-14.2, -14.2, -14.2, -14.2, -14.2),
e_5 = c(0, 0, 0, 0, 0), S = c(12, 12, 12, 12, 12),
R = c(0.59189685884369, 0.583646426252063,
0.556293941275237, 0.576160481501275, 0.597435112708129)),
row.names = c(NA, 5L), class = "data.frame")
> dput(Multi.Presence)
structure(list(N_l = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), m = c(1.2,
1, 0.85, 0.65, 0.65, 0.65, 0.65, 0.65, 0.65, 0.65)), row.names = c(NA,
-10L), class = "data.frame")
The theoretical data to fit the equation to is CSi.Girder1
. At the moment, the way the function is set up, it calculates the maximum R
for each row of dataframe DATA.GIRDER1
.
I want to add a regression term based on variable S in dataframe DATA.GIRDER1
to the second part of the equation to find parameters a
and b
to best fit the data in CSi.Girder1
. The desired output would implement the equation below:
To use nlsLM
I need to define a function for the equation such as:
library(minpack.lm)
Prposed.Girder1 <- function(N_b, N_l,A,x.sqr,e_1,e_2,e_3,e_4,e_5,S,a,b) {
R <- function(x){
N_b <- x[1]
N_l <- x[2]
A <- x[3]
x.sqr <- x[4]
e <- x[grepl("e_\\d",names(x))]
f <- sapply(seq(N_l),function(k) max(Multi.Presence$m[k] * ((k/N_b) +
(A * combn(e,k,sum) / x.sqr) * (b*S^a))))
c(val = max(f), pos = which.max(f))
}
DATA.GIRDER1 <- cbind(DATA.GIRDER1, vars = t(apply(DATA.GIRDER1, 1, R)))
colnames(DATA.GIRDER1)[12:13] <- c("Proposed.Girder1","Lanes")
return(R)
}
Girder1_nlsLM <- nlsLM(R ~ Prposed.Girder1(N_b, N_l,A,x.sqr,e_1,e_2,e_3,e_4,e_5,S,a,b),
data = DATA.GIRDER1,
start = c(a = 0.01, b = 0.01))
summary(Girder1_nlsLM)
But this is not successful and I get the error:
Error in model.frame.default(formula = ~R + N_b + N_l + A + x.sqr + e_1 + : object is not a matrix
How can I add this modification factor in terms of variable S
to solve for the parameters a
and b
.