I have created a CNN to do binary classification in a dataset of 400 images. My code is the following:
def neural_network():
classifier = Sequential()
# Adding a first convolutional layer
classifier.add(Convolution2D(48, 3, input_shape = (320, 320, 3), activation = 'relu'))
classifier.add(MaxPooling2D())
# Adding a second convolutional layer
classifier.add(Convolution2D(48, 3, activation = 'relu'))
classifier.add(MaxPooling2D())
#Flattening
classifier.add(Flatten())
#Full connected
classifier.add(Dense(256, activation = 'relu'))
#Full connected
classifier.add(Dense(1, activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
classifier.summary()
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
horizontal_flip = True,
vertical_flip=True,
brightness_range=[0.5, 1.5])
test_datagen = ImageDataGenerator(rescale = 1./255)
test_final_datagen = ImageDataGenerator(rescale = 1./255)
test_final_four = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('/content/drive/My Drive/data_sep/train',
target_size = (320, 320),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('/content/drive/My Drive/data_sep/validate',
target_size = (320, 320),
batch_size = 32,
class_mode = 'binary')
test_final = test_final_datagen.flow_from_directory('/content/drive/My Drive/data_sep/validate',
target_size = (320, 320),
batch_size = 32,
class_mode = 'binary',
shuffle = False)
filepath = "/content/drive/My Drive/data_sep/weightsbestval.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max',save_weights_only=True)
callbacks_list = [checkpoint]
history = classifier.fit(training_set,
epochs = 50,
validation_data = test_set,
callbacks= [callbacks_list]
)
best_score = max(history.history['val_accuracy'])
How can I perform 10 fold cross validation on my dataset? I have not seen anywhere 10 fold being performed with data augmentation, but with so few images, without it the accuracy will be very low. What can I do?
conceptually what you need is the following:
sklearn.model_selection.KFold
ImageDataGenerator.dataflow_from_dataframe()
to feed the modelread more in
flow_from_dataframe()
docs