Ok, so basically my problem is shifting frame of mind from solving math problems „on the paper“ to solving them by programing. Let me explain: I want to know is it possible to perform operations on variable before assigning it a value. Like if I have something like (1-x)**n
can I firstly assign n a value, then turn it into a from specific for certain degree and then give x a value or values. If I wasn’t clear enough: if n=2 can I firstly turn equation in form 1-2x+x**2
and then in the next step take care of x value?
I want to write a code for calculating and drawing n-th degree Bezier curve .I am using Bernstein polynomials for this, so I realized that equations consists of 3 parts: first part are polynomial coefficients which are all part of Pascal triangle; I am calculating those and putting them in one list. Second part are coordinates of control points which are also some kind of coefficients, and put them in separate list. Now comes the hard part: part of equation that has a variable.Bernsteins are working with barocentric coordinates (meaning u and 1-u).N-th degree formula for this part of equation is:
u**i *(1-u)**(n-i)
where n is curve degree, I goes from 0->n and U is variable.U is acctualy normalised variable,meaning that it value can be from 0 to 1 and i want to itterate it later in certain number of steps (like 1000).But problem is if i try to use mentioned equation i keep getting error, because Python doesnt know what to do with u.I taught about nested loops in which first one would itterate a value of u from 0 to 1 and second would take care of the mentioned equation from 0 to n, but not sure if it is right solution,and no idea how to chech results.What do you think? PS: I have not uploaded the code because the part with which im having problem i can not even start,and ,I think but could be wrong, that it is separated from the rest of the code; but if you think it can help solving problem i can upload it.
There are Python packages for doing symbolic math, but it might be easier to use some of the polynomial functions available in Numpy. These functions use the convention that a polynomial is represented as an array of coefficients, starting with the lowest order coefficient. So a polynomial
a*x^2 + b*x + c
would be represented asarray([c, b, a])
.Some examples:
And you could calculate your Bernstein polynomial in a way similar to this (there is still a binomial coefficient missing):