I'm trying to load a pretrained retinanet model with keras by running:
# import keras
import keras
# import keras_retinanet
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
# set tf backend to allow memory to grow, instead of claiming everything
import tensorflow as tf
def get_session():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
model_path = os.path.join('sample_data/snapshots', sorted(os.listdir('sample_data/snapshots'), reverse=True)[0])
print(model_path)
# load retinanet model
model = models.load_model(model_path, backbone_name='resnet50')
model = models.convert_model(model)
I am facing the following error with both codes:
OSError: SavedModel file does not exist at: sample_data/snapshots/training_5000(640_480).h5/{saved_model.pbtxt|saved_model.pb}
the cause might be some new versions of Keras or tensorflow, soo I am going to list the versions that I am currently using.
keras.__version__
2.4.3
tf.__version__
2.4.1
Note: I am trying to run this code in my Colab.