%999 represent Blank tile.
goal([999,0,1, 2,3,4, 5,6,7]).
%To move left in any row ther are two cases:
%Case_1: Blank tile in the second index.
%Case_2: Blank tile in the third index.
% move left in the top row
move([X0,999,X2, X3,X4,X5, X6,X7,X8],
[999,X0,X2, X3,X4,X5, X6,X7,X8]). %second
move([X0,X1,999, X3,X4,X5, X6,X7,X8],
[X0,999,X1, X3,X4,X5, X6,X7,X8]). %third
% move left in the middle row
move([X0,X1,X2, X3,999,X5, X6,X7,X8],
[X0,X1,X2, 999,X3,X5, X6,X7,X8]). %second
move([X0,X1,X2, X3,X4,999, X6,X7,X8]
,[X0,X1,X2, X3,999,X4, X6,X7,X8]). %third
% move left in the bottom row
move([X0,X1,X2, X3,X4,X5, X6,999,X8],
[X0,X1,X2, X3,X4,X5, 999,X6,X8]). %second
move([X0,X1,X2, X3,X4,X5, X6,X7,999],
[X0,X1,X2, X3,X4,X5, X6,999,X7]). %third
% To move right in any row there are two cases:
% Case_1: 999 tile in the first index.
% Case_2: 999 tile in the second index.
% move right in the top row
move([999,X1,X2, X3,X4,X5, X6,X7,X8],
[X1,999,X2, X3,X4,X5, X6,X7,X8]). %first
move([X0,999,X2, X3,X4,X5, X6,X7,X8],
[X0,X2,999, X3,X4,X5, X6,X7,X8]). %seond
%% move right in the middle row
move([X0,X1,X2, 999,X4,X5, X6,X7,X8],
[X0,X1,X2, X4,999,X5, X6,X7,X8]). %first
move([X0,X1,X2, X3,999,X5, X6,X7,X8],
[X0,X1,X2, X3,X5,999,X6,X7,X8]). %second
%% move right in the bottom row
move([X0,X1,X2, X3,X4,X5, 999,X7,X8],
[X0,X1,X2, X3,X4,X5, X7,999,X8]). %first
move([X0,X1,X2, X3,X4,X5, X6,999,X8],
[X0,X1,X2, X3,X4,X5, X6,X8,999]). %second
%It is not possible to move up when existing in the top row.
% so, moving up will only be possible from bottom and middle rows from
% the three indecies.
%% move up from the middle row
move([X0,X1,X2, 999,X4,X5, X6,X7,X8],
[999,X1,X2, X0,X4,X5, X6,X7,X8]). %first
move([X0,X1,X2, X3,999,X5, X6,X7,X8],
[X0,999,X2, X3,X1,X5, X6,X7,X8]). %second
move([X0,X1,X2, X3,X4,999, X6,X7,X8],
[X0,X1,999, X3,X4,X2, X6,X7,X8]). %third
%% move up from the bottom row
move([X0,X1,X2, X3,X4,X5, 999,X7,X8],
[X0,X1,X2, 999,X4,X5, X3,X7,X8]). %first
move([X0,X1,X2, X3,X4,X5, X6,999,X8],
[X0,X1,X2, X3,999,X5, X6,X4,X8]). %second
move([X0,X1,X2, X3,X4,X5, X6,X7,999],
[X0,X1,X2, X3,X4,999, X6,X7,X5]). %third
% moving down only from the middle and top rows from the three
% indicies.
% move down from the top row
move([999,X1,X2, X3,X4,X5, X6,X7,X8],
[X3,X1,X2, 999,X4,X5, X6,X7,X8]). %first
move([X0,999,X2, X3,X4,X5, X6,X7,X8],
[X0,X4,X2, X3,999,X5, X6,X7,X8]). %second
move([X0,X1,999, X3,X4,X5, X6,X7,X8],
[X0,X1,X5, X3,X4,999, X6,X7,X8]). %third
%% move down from the middle row
move([X0,X1,X2, 999,X4,X5, X6,X7,X8],
[X0,X1,X2, X6,X4,X5, 999,X7,X8]). %first
move([X0,X1,X2, X3,999,X5, X6,X7,X8],
[X0,X1,X2, X3,X7,X5, X6,999,X8]). %second
move([X0,X1,X2, X3,X4,999, X6,X7,X8],
[X0,X1,X2, X3,X4,X8, X6,X7,999]). %third
dfs(S, Path, Path) :-
goal(S),!.
dfs(S, Checked, Path) :-
% try a move
move(S, S2),
% ensure the resulting state is new
\+member(S2, Checked),
% and that this state leads to the goal
dfs(S2, [S2|Checked], Path).
%SS: state start
%SE: state end
%path(SS, Checked, MoveList):-
% move(SS, Snext),
% \+member(Snext, Checked),
% path(Snext,[Snext|Checked], [Snext, SS|MoveList]).
%path(_,_, MoveList):-
%output(MoveList).
% Printing
%output([]) :- nl.
%output([[A,B]|MoveList]) :-
% output(MoveList),
% write(B), write(' -> '), write(A), nl.
find :-
dfs([6,1,3 4,999,5, 7,2,0],_,_).
Prolog for eight puzzle
4.3k Views Asked by yara elbenasy At
2
There are 2 best solutions below
0

Another alternative solution, where:
- states are represented as terms, and
- iterative deepening search is controled through the use of predicate
length/2
.
With this implementation, a solution was found in approximately 40 seconds (SWI-Prolog, v.8.2.4).
ids :-
start(State),
length(Moves, N),
dfs([State], Moves, Path), !,
show([start|Moves], Path),
format('~nmoves = ~w~n', [N]).
dfs([State|States], [], Path) :-
goal(State), !,
reverse([State|States], Path).
dfs([State|States], [Move|Moves], Path) :-
move(State, Next, Move),
not(memberchk(Next, [State|States])),
dfs([Next,State|States], Moves, Path).
show([], _).
show([Move|Moves], [State|States]) :-
State = state(A,B,C,D,E,F,G,H,I),
format('~n~w~n~n', [Move]),
format('~w ~w ~w~n',[A,B,C]),
format('~w ~w ~w~n',[D,E,F]),
format('~w ~w ~w~n',[G,H,I]),
show(Moves, States).
% Empty position is marked with '*'
start( state(6,1,3,4,*,5,7,2,0) ).
goal( state(*,0,1,2,3,4,5,6,7) ).
move( state(*,B,C,D,E,F,G,H,J), state(B,*,C,D,E,F,G,H,J), right).
move( state(*,B,C,D,E,F,G,H,J), state(D,B,C,*,E,F,G,H,J), down ).
move( state(A,*,C,D,E,F,G,H,J), state(*,A,C,D,E,F,G,H,J), left ).
move( state(A,*,C,D,E,F,G,H,J), state(A,C,*,D,E,F,G,H,J), right).
move( state(A,*,C,D,E,F,G,H,J), state(A,E,C,D,*,F,G,H,J), down ).
move( state(A,B,*,D,E,F,G,H,J), state(A,*,B,D,E,F,G,H,J), left ).
move( state(A,B,*,D,E,F,G,H,J), state(A,B,F,D,E,*,G,H,J), down ).
move( state(A,B,C,*,E,F,G,H,J), state(*,B,C,A,E,F,G,H,J), up ).
move( state(A,B,C,*,E,F,G,H,J), state(A,B,C,E,*,F,G,H,J), right).
move( state(A,B,C,*,E,F,G,H,J), state(A,B,C,G,E,F,*,H,J), down ).
move( state(A,B,C,D,*,F,G,H,J), state(A,*,C,D,B,F,G,H,J), up ).
move( state(A,B,C,D,*,F,G,H,J), state(A,B,C,D,F,*,G,H,J), right).
move( state(A,B,C,D,*,F,G,H,J), state(A,B,C,D,H,F,G,*,J), down ).
move( state(A,B,C,D,*,F,G,H,J), state(A,B,C,*,D,F,G,H,J), left ).
move( state(A,B,C,D,E,*,G,H,J), state(A,B,*,D,E,C,G,H,J), up ).
move( state(A,B,C,D,E,*,G,H,J), state(A,B,C,D,*,E,G,H,J), left ).
move( state(A,B,C,D,E,*,G,H,J), state(A,B,C,D,E,J,G,H,*), down ).
move( state(A,B,C,D,E,F,*,H,J), state(A,B,C,D,E,F,H,*,J), left ).
move( state(A,B,C,D,E,F,*,H,J), state(A,B,C,*,E,F,D,H,J), up ).
move( state(A,B,C,D,E,F,G,*,J), state(A,B,C,D,E,F,*,G,J), left ).
move( state(A,B,C,D,E,F,G,*,J), state(A,B,C,D,*,F,G,E,J), up ).
move( state(A,B,C,D,E,F,G,*,J), state(A,B,C,D,E,F,G,J,*), right).
move( state(A,B,C,D,E,F,G,H,*), state(A,B,C,D,E,*,G,H,F), up ).
move( state(A,B,C,D,E,F,G,H,*), state(A,B,C,D,E,F,G,*,H), left ).
Running example:
?- time(ids).
start
6 1 3
4 * 5
7 2 0
left
6 1 3
* 4 5
7 2 0
up
* 1 3
6 4 5
7 2 0
right
1 * 3
6 4 5
7 2 0
down
1 4 3
6 * 5
7 2 0
right
1 4 3
6 5 *
7 2 0
down
1 4 3
6 5 0
7 2 *
left
1 4 3
6 5 0
7 * 2
left
1 4 3
6 5 0
* 7 2
up
1 4 3
* 5 0
6 7 2
right
1 4 3
5 * 0
6 7 2
right
1 4 3
5 0 *
6 7 2
down
1 4 3
5 0 2
6 7 *
left
1 4 3
5 0 2
6 * 7
left
1 4 3
5 0 2
* 6 7
up
1 4 3
* 0 2
5 6 7
right
1 4 3
0 * 2
5 6 7
right
1 4 3
0 2 *
5 6 7
up
1 4 *
0 2 3
5 6 7
left
1 * 4
0 2 3
5 6 7
left
* 1 4
0 2 3
5 6 7
down
0 1 4
* 2 3
5 6 7
right
0 1 4
2 * 3
5 6 7
right
0 1 4
2 3 *
5 6 7
up
0 1 *
2 3 4
5 6 7
left
0 * 1
2 3 4
5 6 7
left
* 0 1
2 3 4
5 6 7
moves = 26
% 97,719,612 inferences, 40.344 CPU in 40.991 seconds (98% CPU, 2422175 Lips)
true.
An alternative approach where the current "state" (representing the state of the board) in the search space is represented by matrix: a list of 3 lists. The positions in this matrix are given by column and row coordinates, each ranging from 0 to 2:
If a matrix position shall represent the "empty cell", we write empty list at that position (because it looks nice), otherwise we write one of the integers 0..7
And so: