How can I show that "(SKIP,s)⇒ s", which is a rule of the Big Step Semantics, terminates in Isabelle?
Big Step Semantics is defined as follows "(SKIP,s)⇒ s" is one command.
inductive big_step :: "com × state ⇒ state ⇒ bool" where
Skip: "(SKIP,s) ⇒ s" |
Assign: "(x ::= a,s) ⇒ s(x := aval a s)" |
Seq: "⟦ (c⇩1,s⇩1) ⇒ s⇩2; (c⇩2,s⇩2) ⇒ s⇩3 ⟧ ⟹ (c⇩1;;c⇩2, s⇩1) ⇒ s⇩3" |
IfTrue: "⟦ bval b s; (c⇩1,s) ⇒ t ⟧ ⟹ (IF b THEN c⇩1 ELSE c⇩2, s) ⇒ t" |
IfFalse: "⟦ ¬bval b s; (c⇩2,s) ⇒ t ⟧ ⟹ (IF b THEN c⇩1 ELSE c⇩2, s) ⇒ t" |
I used the formal definition for total correctness
⊫ {P} c {Q} ≡ ∀s. P s ⟶ (∃ t. (c, s) ⇒ t ∧ Q t)
so that my Lemma now has the following form:
lemma "skip: {P} skip {Q} ≡ ∀s. P s ⟶ (∃ t. (skip, s) ⇒ t ∧ Q t)"
Is that definition of the Lemma correct to show that it terminates?