I tried to use the function pmdarima.auto_arima following a tutorial on my data. Despite having success on the tutorial, the same code on my data don't return forecasting values but does return upper and lower series.
Here is my code :
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
from matplotlib.pylab import rcParams
from statsmodels.tsa.stattools import adfuller
import pmdarima as pm
df = pd.read_csv("Test_Data.csv",sep=";")
#string to date format
df['Month'] = pd.to_datetime(df['Month'], format="%d/%m/%Y")
df = df.set_index(['Month'])
def forecast(ARIMA_model, periods=24):
# Forecast
n_periods = periods
fitted, confint = ARIMA_model.predict(n_periods=n_periods, return_conf_int=True)
index_of_fc = pd.date_range(df.index[-1] + pd.DateOffset(months=1), periods = n_periods, freq='MS')
# make series for plotting purpose
fitted_series = pd.Series(fitted, index=index_of_fc)
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
# Plot
plt.figure(figsize=(15,7))
plt.plot(df["NET"], color='#1f76b4')
plt.plot(fitted_series, color='darkgreen')
plt.fill_between(lower_series.index,
lower_series,
upper_series,
color='k', alpha=.15)
plt.title("ARIMA/SARIMA - Forecast of Airline Passengers")
plt.show()
# Seasonal - fit stepwise auto-ARIMA
SARIMA_model = pm.auto_arima(df["NET"], start_p=1, start_q=1,
test='adf',
max_p=3, max_q=3,
m=12, #12 is the frequncy of the cycle
start_P=0,
seasonal=True, #set to seasonal
d=None,
D=1, #order of the seasonal differencing
trace=False,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
forecast(SARIMA_model)
And here is the result : No display of the forecasted value