Python Efficient Web Scraping?

2.7k Views Asked by At

I'm fairly new to Python and am trying to make a web parser for a stock app. I'm essentially using urllib to open the desired webpage for each stock in the argument list and reading the full contents of the html code for that page. Then I'm slicing that in order to find the quote I'm looking for. The method I've implemented works, but I'm doubtful that this is the most efficient means of achieving this result. I've spent some time looking into other potential methods for reading files more rapidly, but none seem to pertain to web scraping. Here's my code:

from urllib.request import urlopen

def getQuotes(stocks):
    quoteList = {}
    for stock in stocks:
        html = urlopen("https://finance.google.com/finance?q={}".format(stock))
        webpageData = html.read()
        scrape1 = webpageData.split(str.encode('<span class="pr">\n<span id='))[1].split(str.encode('</span>'))[0]
        scrape2 = scrape1.split(str.encode('>'))[1]
        quote = bytes.decode(scrape2)
        quoteList[stock] = float(quote)
    return quoteList

print(getQuotes(['FB', 'GOOG', 'TSLA']))

Thank you all so much in advance!

1

There are 1 best solutions below

4
On BEST ANSWER

I'm essentially using urllib to open the desired webpage for each stock in the argument list and reading the full contents of the html code for that page. Then I'm slicing that in order to find the quote I'm looking for.

Here's that implementation in Beautiful Soup and requests:

import requests
from bs4 import BeautifulSoup

def get_quotes(*stocks):
    quotelist = {}
    base = 'https://finance.google.com/finance?q={}'
    for stock in stocks:
        url = base.format(stock)
        soup = BeautifulSoup(requests.get(url).text, 'html.parser')
        quote = soup.find('span', attrs={'class' : 'pr'}).get_text().strip()
        quotelist[stock] = float(quote)
    return quotelist

print(get_quotes('AAPL', 'GE', 'C'))
{'AAPL': 160.86, 'GE': 23.91, 'C': 68.79}
# 1 loop, best of 3: 1.31 s per loop

As mentioned in the comments you may want to look into multithreading or grequests.

Using grequests to make asynchronous HTTP requests:

def get_quotes(*stocks):
    quotelist = {}
    base = 'https://finance.google.com/finance?q={}'
    rs = (grequests.get(u) for u in [base.format(stock) for stock in stocks])
    rs = grequests.map(rs)
    for r, stock in zip(rs, stocks):
        soup = BeautifulSoup(r.text, 'html.parser')
        quote = soup.find('span', attrs={'class' : 'pr'}).get_text().strip()
        quotelist[stock] = float(quote)
    return quotelist

%%timeit 
get_quotes('AAPL', 'BAC', 'MMM', 'ATVI',
           'PPG', 'MS', 'GOOGL', 'RRC')
1 loop, best of 3: 2.81 s per loop

Update: here's a modified version from Dusty Phillips' Python 3 Object-oriented Programming that uses the built-in threading module.

from threading import Thread

from bs4 import BeautifulSoup
import numpy as np
import requests


class QuoteGetter(Thread):
    def __init__(self, ticker):
        super().__init__()
        self.ticker = ticker
    def run(self):
        base = 'https://finance.google.com/finance?q={}'
        response = requests.get(base.format(self.ticker))
        soup = BeautifulSoup(response.text, 'html.parser')
        try:
            self.quote = float(soup.find('span', attrs={'class':'pr'})
                                .get_text()
                                .strip()
                                .replace(',', ''))
        except AttributeError:
            self.quote = np.nan


def get_quotes(tickers):
    threads = [QuoteGetter(t) for t in tickers]
    for thread in threads:        
        thread.start()
    for thread in threads:
        thread.join()
    quotes = dict(zip(tickers, [thread.quote for thread in threads]))
    return quotes

tickers = [
    'A', 'AAL', 'AAP', 'AAPL', 'ABBV', 'ABC', 'ABT', 'ACN', 'ADBE', 'ADI', 
    'ADM',  'ADP', 'ADS', 'ADSK', 'AEE', 'AEP', 'AES', 'AET', 'AFL', 'AGN', 
    'AIG', 'AIV', 'AIZ', 'AJG', 'AKAM', 'ALB', 'ALGN', 'ALK', 'ALL', 'ALLE',
    ]

%time get_quotes(tickers)
# Wall time: 1.53 s