I'm trying to fit a model with hmmlearn given a transition matrix and an emisison matrix a priori. After fit, it gives some negative values in the transition matrix.
The transition matrix is recovered by the transition matrix of another model.
A code of example of what I'm meaning is:
>>> model
GaussianHMM(algorithm='viterbi', covariance_type='diag',covars_prior=0.01,
covars_weight=1, init_params='stmc', means_prior=0, means_weight=0,
n_components=3, n_iter=100, params='stmc', random_state=123,
startprob_prior=1.0, tol=0.5, transmat_prior=1.0, verbose=True)
>>> model.transmat_
array([[ 9.95946216e-01, 2.06359396e-21, 4.05378401e-03],
[ 2.05184679e-21, 9.98355526e-01, 1.64447392e-03],
[ 3.86689326e-03, 1.96383373e-03, 9.94169273e-01]])
>>> new_model= hmm.GaussianHMM(n_components=model.n_components,
random_state=123,
... init_params="mcs", transmat_prior=model.transmat_)
>>> new_model.fit(train_features)
GaussianHMM(algorithm='viterbi', covariance_type='diag', covars_prior=0.01,
covars_weight=1, init_params='mcs', means_prior=0, means_weight=0,
n_components=3, n_iter=10, params='stmc', random_state=123,
startprob_prior=1.0, tol=0.01,
transmat_prior=array([[ 9.95946e-01, 2.06359e-21, 4.05378e-03],
[ 2.05185e-21, 9.98356e-01, 1.64447e-03],
[ 3.86689e-03, 1.96383e-03, 9.94169e-01]]),
verbose=False)
>>> new_model.transmat_
array([[ 9.98145253e-01, 1.86155258e-03, -7.08313729e-06],
[ 2.16330448e-03, 9.93941859e-01, 3.89483667e-03],
[ -5.44842863e-06, 3.52862069e-03, 9.96478546e-01]])
>>>
In the code shown training data are also the same. If I don't use the transition matrix in priori but the emission, for example, it works correctly. I'm using Anaconda 2.5 64-bit. hmmlearn version is 0.2.0
Hint? Thanks
tl;dr ensure
transmat_prior
is >=1.EM algorithm for hidden Markov models is derived using state indicator variables
z
which hold the state of the Markov chain for each time stept
. Conditioned on the previous statez[t - 1]
,z[t]
follows a Categorical distribution with parameters defined by the transition probability matrix.hmmlearn
implements MAP learning of hidden Markov models, which means that each model parameter has a prior distribution. Specifically, each row of the transition matrix is assumed to follow a symmetric Dirichlet distribution with parametertransmat_prior
. The choice of prior is not random, Dirichlet distribution is conjugate to the Categorical. This gives rise to a simple update rule in the M-step of EM algorithm:where
stat["trans"][i, j]
is the expected number of transitions betweeni
andj
.From the update rule it's clear that transition probabilities can get negative if a)
transmat_prior
is <1 for somei
andj
and b) the expectationstats["trans"]
is not big enough to compensate for this.This is a known issue in MAP estimation of the Categorical distribution and the general advice is to require that
transmat_prior
>=1 for all states.