I'm trying to solve the equation y'' + (epsilon-x^2)y = 0
numerically using odeint. I know the solutions (the wavefunctions of a QHO), but the output from odeint has no apparent relation to it. I can solve ODEs with constant coefficients just fine, but as soon as I move to variable ones, I can't solve any of the ones I tried. Here's my code:
#!/usr/bin/python2
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as spi
x = np.linspace(-5,5,1e4)
n = 0
epsilon = 2*n+1
def D(Y,x):
return np.array([Y[1], (epsilon-x**2)*Y[0]])
Y0 = [0,1]
Y = spi.odeint(D,Y0,x)
# Y is an array with the first column being y(x) and the second y'(x) for all x
plt.plot(x,Y[:,0],label='num')
#plt.plot(x,Y[:,1],label='numderiv')
plt.legend()
plt.show()
And the plot: [not enough rep:] https://drive.google.com/file/d/0B6840LH2NhNpdUVucUxzUGFpZUk/edit?usp=sharing
Look here for plots of solution: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html
It looks like your equation is not correctly interpreted. You have a differential equation
y'' + (epsilon-x^2)y = 0
, but you forget a minus sign in your vector form. In particular it should beSo (adding the minus sign in front of the epsilon term
In fact the plot you have is consistent with the DE
y'' + (epsilon-x^2)y = 0
. Check it out: Wolphram Alpha