I have a dataframe which I want to melt the data into multiple target columns. The below code I used
grp2 = pd.lreshape(grp1, cols.groupby(cols.str.split('_').str[1])).sort_values('ACCT_NAME')
The above line I lose the column names
grp2 = pd.melt(grp1 , id_vars = ['Client' , 'Industry'] , var_name = "H Year" , value_name = 'Count')
The above line I dont get multiple target columns
From DF
Client INDUSTRY 1H2016_6MO 2H2016_6MO 1H2017_6MO 2H2017_6MO 1H2016_12MO 2H2016_12MO 1H2017_12MO 2H2017_12MO
XXX AAA 1 0 0 0 1 1 0 0
YYY BBB 0 0 1 0 0 0 0 1
ZZZ CCC 1 1 0 0 0 0 1 1
XXX AAA 1 0 0 0 1 1 0 0
TO DF
Client INDUSTRY Year_Half 6MO 12MO
XXX AAA 1H2016 2 2
XXX AAA 2H2016 0 2
XXX AAA 1H2017 0 0
XXX AAA 2H2017 0 0
YYY BBB 1H2016 0 0
YYY BBB 2H2016 0 0
YYY BBB 1H2017 1 0
YYY BBB 2H2017 0 1
ZZZ CCC 1H2016 1 0
ZZZ CCC 2H2016 1 0
ZZZ CCC 1H2017 0 1
ZZZ CCC 2H2017 0 1
Please advise on the solution to this. I have seen other question but they dont take the column name into seperate columns
Use:
set_index
for separate columnssplit
stack
If only
6MO
and12MO
values and ordering of columns is important: