RuntimeError: Given transposed=1, weight of size [1024, 512, 2, 2], expected input[24, 512, 48, 48] to have 1024 channels, but got 512 channels instead
unet.py
import torch
from torch import nn
from torch.nn import functional as F
class Unet(nn.Module):
def __init__(self, in_chans, out_chans):
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.first_block = ConvBlock(in_chans, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.down4 = Down(512, 1024)
self.up1 = Up(1024, 512)
self.up2 = Up(512, 256)
self.up3 = Up(256, 128)
self.up4 = Up(128, 64)
self.last_block = nn.Conv2d(64, out_chans, kernel_size=1)
def norm(self, x):
b, h, w = x.shape
x = x.view(b, h * w)
mean = x.mean(dim=1).view(b, 1, 1)
std = x.std(dim=1).view(b, 1, 1)
x = x.view(b, h, w)
return (x - mean) / std, mean, std
def unnorm(self, x, mean, std):
return x * std + mean
def forward(self, input):
input, mean, std = self.norm(input)
input = input.unsqueeze(1)
d1 = self.first_block(input)
d2 = self.down1(d1)
d3 = self.down2(d2)
d4 = self.down3(d3)
m0 = self.down4(d4)
u1 = self.up1(m0, d4)
u2 = self.up1(u1, d3)
u3 = self.up1(u2, d2)
u4 = self.up1(u3, d1)
output = self.last_block(u4)
output = output.squeeze(1)
output = self.unnorm(output, mean, std)
return output
class ConvBlock(nn.Module):
def __init__(self, in_chans, out_chans):
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.layers = nn.Sequential(
nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True),
nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1),
nn.BatchNorm2d(out_chans),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.layers(x)
class Down(nn.Module):
def __init__(self, in_chans, out_chans):
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.layers = nn.Sequential(
nn.MaxPool2d(2),
ConvBlock(in_chans, out_chans)
)
def forward(self, x):
return self.layers(x)
class Up(nn.Module):
def __init__(self, in_chans, out_chans):
super().__init__()
self.in_chans = in_chans
self.out_chans = out_chans
self.up = nn.ConvTranspose2d(in_chans, in_chans // 2, kernel_size=2, stride=2)
self.conv = ConvBlock(in_chans, out_chans)
def forward(self, x, concat_input):
x = self.up(x)
concat_output = torch.cat([concat_input, x], dim=1)
return self.conv(concat_output)
train.py
import sys
sys.path.append("/content/drive/MyDrive/FastMRI")
import argparse
import shutil
from utils.learning.train_part import train
from pathlib import Path
def parse():
parser = argparse.ArgumentParser(description='Train Unet on FastMRI challenge Images',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-g', '--GPU-NUM', type=int, default=0, help='GPU number to allocate')
parser.add_argument('-b', '--batch-size', type=int, default=24, help='Batch size')
parser.add_argument('-e', '--num-epochs', type=int, default=30, help='Number of epochs')
parser.add_argument('-l', '--lr', type=float, default=1e-3, help='Learning rate')
parser.add_argument('-r', '--report-interval', type=int, default=500, help='Report interval')
parser.add_argument('-n', '--net-name', type=Path, default='test_Unet', help='Name of network')
parser.add_argument('-t', '--data-path-train', type=Path, default='Train/', help='Directory of train data')
parser.add_argument('-v', '--data-path-val', type=Path, default='Validation/', help='Directory of validation data')
parser.add_argument('--in-chans', type=int, default=1, help='Size of input channels for network')
parser.add_argument('--out-chans', type=int, default=1, help='Size of output channels for network')
parser.add_argument('--input-key', type=str, default='image_input', help='Name of input key')
parser.add_argument('--target-key', type=str, default='image_label', help='Name of target key')
parser.add_argument('--max-key', type=str, default='max', help='Name of max key in attributes')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse()
args.exp_dir = '../result' / args.net_name / 'checkpoints'
args.val_dir = '../result' / args.net_name / 'reconstructions_val'
args.main_dir = '../result' / args.net_name / __file__
args.exp_dir.mkdir(parents=True, exist_ok=True)
args.val_dir.mkdir(parents=True, exist_ok=True)
train(args)
Where is the problem?..
An error occurred while configuring the unet. I don't know where the problem is. I want to solve the problem.
self.first_block = ConvBlock(in_chans, 2)
self.down1 = Down(2, 4)
self.up1 = Up(4, 2)
self.last_block = nn.Conv2d(2, out_chans, kernel_size=1)
d1 = self.first_block(input)
m0 = self.down1(d1)
u1 = self.up1(m0, d1)
output = self.last_block(u1)
There was no error when it was like this, but an error occurred when the value was increased.