Pytorch model runtime error when testing U-Net

63 Views Asked by At

RuntimeError: Given transposed=1, weight of size [1024, 512, 2, 2], expected input[24, 512, 48, 48] to have 1024 channels, but got 512 channels instead

unet.py

import torch
from torch import nn
from torch.nn import functional as F


class Unet(nn.Module):

    def __init__(self, in_chans, out_chans):
        super().__init__()
        self.in_chans = in_chans
        self.out_chans = out_chans

        self.first_block = ConvBlock(in_chans, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        self.down4 = Down(512, 1024)
        self.up1 = Up(1024, 512)
        self.up2 = Up(512, 256)
        self.up3 = Up(256, 128)
        self.up4 = Up(128, 64)
        self.last_block = nn.Conv2d(64, out_chans, kernel_size=1)

    def norm(self, x):
        b, h, w = x.shape
        x = x.view(b, h * w)
        mean = x.mean(dim=1).view(b, 1, 1)
        std = x.std(dim=1).view(b, 1, 1)
        x = x.view(b, h, w)
        return (x - mean) / std, mean, std

    def unnorm(self, x, mean, std):
        return x * std + mean

    def forward(self, input):
        input, mean, std = self.norm(input)
        input = input.unsqueeze(1)
        d1 = self.first_block(input)
        d2 = self.down1(d1)
        d3 = self.down2(d2)
        d4 = self.down3(d3)
        m0 = self.down4(d4)
        u1 = self.up1(m0, d4)
        u2 = self.up1(u1, d3)
        u3 = self.up1(u2, d2)
        u4 = self.up1(u3, d1)
        output = self.last_block(u4)
        output = output.squeeze(1)
        output = self.unnorm(output, mean, std)

        return output


class ConvBlock(nn.Module):

    def __init__(self, in_chans, out_chans):
        super().__init__()
        self.in_chans = in_chans
        self.out_chans = out_chans
        self.layers = nn.Sequential(
            nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_chans),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_chans),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.layers(x)


class Down(nn.Module):

    def __init__(self, in_chans, out_chans):
        super().__init__()
        self.in_chans = in_chans
        self.out_chans = out_chans
        self.layers = nn.Sequential(
            nn.MaxPool2d(2),
            ConvBlock(in_chans, out_chans)
        )

    def forward(self, x):
        return self.layers(x)


class Up(nn.Module):

    def __init__(self, in_chans, out_chans):
        super().__init__()
        self.in_chans = in_chans
        self.out_chans = out_chans
        self.up = nn.ConvTranspose2d(in_chans, in_chans // 2, kernel_size=2, stride=2)
        self.conv = ConvBlock(in_chans, out_chans)

    def forward(self, x, concat_input):
        x = self.up(x)
        concat_output = torch.cat([concat_input, x], dim=1)
        return self.conv(concat_output)

train.py

import sys
sys.path.append("/content/drive/MyDrive/FastMRI")
import argparse
import shutil
from utils.learning.train_part import train
from pathlib import Path


def parse():
    parser = argparse.ArgumentParser(description='Train Unet on FastMRI challenge Images',
                                    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('-g', '--GPU-NUM', type=int, default=0, help='GPU number to allocate')
    parser.add_argument('-b', '--batch-size', type=int, default=24, help='Batch size')
    parser.add_argument('-e', '--num-epochs', type=int, default=30, help='Number of epochs')
    parser.add_argument('-l', '--lr', type=float, default=1e-3, help='Learning rate')
    parser.add_argument('-r', '--report-interval', type=int, default=500, help='Report interval')
    parser.add_argument('-n', '--net-name', type=Path, default='test_Unet', help='Name of network')
    parser.add_argument('-t', '--data-path-train', type=Path, default='Train/', help='Directory of train data')
    parser.add_argument('-v', '--data-path-val', type=Path, default='Validation/', help='Directory of validation data')
    
    parser.add_argument('--in-chans', type=int, default=1, help='Size of input channels for network')
    parser.add_argument('--out-chans', type=int, default=1, help='Size of output channels for network')
    parser.add_argument('--input-key', type=str, default='image_input', help='Name of input key')
    parser.add_argument('--target-key', type=str, default='image_label', help='Name of target key')
    parser.add_argument('--max-key', type=str, default='max', help='Name of max key in attributes')

    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = parse()
    args.exp_dir = '../result' / args.net_name / 'checkpoints'
    args.val_dir = '../result' / args.net_name / 'reconstructions_val'
    args.main_dir = '../result' / args.net_name / __file__

    args.exp_dir.mkdir(parents=True, exist_ok=True)
    args.val_dir.mkdir(parents=True, exist_ok=True)

    train(args)

Where is the problem?..

An error occurred while configuring the unet. I don't know where the problem is. I want to solve the problem.

        self.first_block = ConvBlock(in_chans, 2)
        self.down1 = Down(2, 4)
        self.up1 = Up(4, 2)
        self.last_block = nn.Conv2d(2, out_chans, kernel_size=1)
       d1 = self.first_block(input)
        m0 = self.down1(d1)
        u1 = self.up1(m0, d1)
        output = self.last_block(u1)

There was no error when it was like this, but an error occurred when the value was increased.

0

There are 0 best solutions below