I am trying to implement RoBERTa model for sentiment analysis. First, I declared GPReviewDataset to create a PyTorch Dataset.
MAX_LEN = 160
class GPReviewDataset(Dataset):
def __init__(self, reviews, targets, tokenizer, max_len):
self.reviews = reviews
self.targets = targets
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.reviews)
def __getitem__(self, item):
review = str(self.reviews[item])
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
review,
add_special_tokens=True,
max_length=self.max_len,
return_token_type_ids=False,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt',
)
return {
'review_text': review,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'targets': torch.tensor(target, dtype=torch.long)
}
Next, I implement create_data_loader
to create a couple of data loaders. Here’s a helper function to do it:
def create_data_loader(df, tokenizer, max_len, batch_size):
ds = GPReviewDataset(
reviews=df.text.to_numpy(),
targets=df.sentiment.to_numpy(),
tokenizer=tokenizer,
max_len=max_len
)
return DataLoader(
ds,
batch_size=batch_size,
num_workers=4
)
BATCH_SIZE = 16
train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)
dt = next(iter(train_data_loader))
However, when I run this code then it stops and gives me out these errors:
TypeError Traceback (most recent call last)
<ipython-input-35-a673c0794f60> in <module>()
----> 1 dt = next(iter(train_data_loader))
3 frames
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in __next__(self)
433 if self._sampler_iter is None:
434 self._reset()
--> 435 data = self._next_data()
436 self._num_yielded += 1
437 if self._dataset_kind == _DatasetKind.Iterable and \
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _next_data(self)
1083 else:
1084 del self._task_info[idx]
-> 1085 return self._process_data(data)
1086
1087 def _try_put_index(self):
/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py in _process_data(self, data)
1109 self._try_put_index()
1110 if isinstance(data, ExceptionWrapper):
-> 1111 data.reraise()
1112 return data
1113
/usr/local/lib/python3.6/dist-packages/torch/_utils.py in reraise(self)
426 # have message field
427 raise self.exc_type(message=msg)
--> 428 raise self.exc_type(msg)
429
430
TypeError: Caught TypeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop
data = fetcher.fetch(index)
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "<ipython-input-18-1e537ce5a428>", line 25, in __getitem__
'targets': torch.tensor(target, dtype=torch.long)
TypeError: new(): invalid data type 'str'
I do not understand why it happens, can anyone please help me and explain.
You need to define your classes as integer. I assume you are working on a classification problem. But it looks like you have defined your classes as strings. You need to convert your classes from string to integer. For example, if df.sentiment corresponds to positive, you must represent with 0 or df.sentiment corresponds to negative you need to represent with 1 in a new column.
Then you should use column df.int_sentiment instead of df.sentiment. So you have to change create_data_loader function as follows.