I am just starting in R and I came across this problem when trying to recode 88 to special missing value using naniar library. Given this dataframe:
library(tidyverse)
df <- tibble::tribble(
~wind, ~temp, ~sun, ~test,
88, 45, 88, NA,
68, NA, 23, 63,
NA, 88, 88, 15,
)
I want to change all the "88" to NA_broken_machine in the shadow matrix. So what I did was first use bind_shadow to attach the shadow matrix to my data and then add the new missing level using recode_shadow, but even though the new level applied for all the shadow matrix it only changed the wind variable
library(naniar)
dfs_recode <- df %>%
bind_shadow() %>%
recode_shadow(wind = .where(wind == 88 ~ "broken_machine"))
dfs_recode
# A tibble: 3 x 8
wind temp sun test wind_NA temp_NA sun_NA test_NA
<dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <fct>
1 88 45 88 NA NA_broken_machine !NA !NA NA
2 68 NA 23 63 !NA NA !NA !NA
3 NA 88 88 15 NA !NA !NA !NA
str(dfs_recode)
tibble [3 x 8] (S3: nabular/tbl_df/tbl/data.frame)
$ wind : num [1:3] 88 68 NA
$ temp : num [1:3] 45 NA 88
$ sun : num [1:3] 88 23 88
$ test : num [1:3] NA 63 15
$ wind_NA: Factor w/ 3 levels "!NA","NA","NA_broken_machine": 3 1 2
$ temp_NA: Factor w/ 3 levels "!NA","NA","NA_broken_machine": 1 2 1
$ sun_NA : Factor w/ 3 levels "!NA","NA","NA_broken_machine": 1 1 1
$ test_NA: Factor w/ 3 levels "!NA","NA","NA_broken_machine": 2 1 1
The only one I came across was doing variable by variable using mutate and then convert it to shade. I think there is a better way to do this but I can not figure it out. I would really appreciate your help with this.
x <- dfs_recode %>%
mutate(temp_NA = factor(case_when(temp == 88 ~ "NA_broken_machine",
TRUE ~ as.character(temp_NA))))
x
# A tibble: 3 x 8
wind temp sun test wind_NA temp_NA sun_NA test_NA
<dbl> <dbl> <dbl> <dbl> <fct> <fct> <fct> <fct>
1 88 45 88 NA NA_broken_machine !NA !NA NA
2 68 NA 23 63 !NA NA !NA !NA
3 NA 88 88 15 NA NA_broken_machine !NA !NA
are_shade(x)
wind temp sun test wind_NA temp_NA sun_NA test_NA
FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
x$temp_NA <- shade(x$temp, broken_machine = 88)
are_shade(x)
wind temp sun test wind_NA temp_NA sun_NA test_NA
FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
Is this maybe what you are looking for?
which produces:
You can remove the extra columns by adding a
%>% select(wind, temp, sun, test)
at the end.