I have a netcdf file containing global sea-surface temperatures. Using matplotlib and Basemap, I've managed to make a map of this data, with the following code:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
filename = '/Users/Nick/Desktop/SST/SST.nc'
fh = Dataset(filename, mode='r')
lons = fh.variables['LON'][:]
lats = fh.variables['LAT'][:]
sst = fh.variables['SST'][:].squeeze()
fig = plt.figure()
m = Basemap(projection='merc', llcrnrlon=80.,llcrnrlat=-25.,urcrnrlon=150.,urcrnrlat=25.,lon_0=115., lat_0=0., resolution='l')
lon, lat = np.meshgrid(lons, lats)
xi, yi = m(lon, lat)
cs = m.pcolormesh(xi,yi,sst, vmin=18, vmax=32)
m.drawmapboundary(fill_color='0.3')
m.fillcontinents(color='0.3', lake_color='0.3')
cbar = m.colorbar(cs, location='bottom', pad="10%", ticks=[18., 20., 22., 24., 26., 28., 30., 32.])
cbar.set_label('January SST (' + u'\u00b0' + 'C)')
plt.savefig('SST.png', dpi=300)
The problem is that the data is very high resolution (9km grid) which makes the resulting image quite noisy. I would like to put the data onto a lower resolution grid (e.g. 1 degree), but I'm struggling to work out how this could be done. I followed a worked solution to try and use the matplotlib griddata function by inserting the code below into my above example, but it resulted in 'ValueError: condition must be a 1-d array'.
xi, yi = np.meshgrid(lons, lats)
X = np.arange(min(x), max(x), 1)
Y = np.arange(min(y), max(y), 1)
Xi, Yi = np.meshgrid(X, Y)
Z = griddata(xi, yi, z, Xi, Yi)
I'm a relative beginner to Python and matplotlib, so I'm not sure what I'm doing wrong (or what a better approach might be). Any advice appreciated!
To answer your original question regarding
scipy.interpolate.griddata
, too:Have a close look at the parameter specs for that function (e.g. in the SciPy documentation) and make sure that your input arrays have the right shapes. You might need to do something like
etc.