My Haskell project includes an expression evaluator, which for the purposes of this question can be simplified to:
data Expression a where
I :: Int -> Expression Int
B :: Bool -> Expression Bool
Add :: Expression Int -> Expression Int -> Expression Int
Mul :: Expression Int -> Expression Int -> Expression Int
Eq :: Expression Int -> Expression Int -> Expression Bool
And :: Expression Bool -> Expression Bool -> Expression Bool
Or :: Expression Bool -> Expression Bool -> Expression Bool
If :: Expression Bool -> Expression a -> Expression a -> Expression a
-- Reduces an Expression down to the simplest representation.
reduce :: Expression a -> Expression a
-- ... implementation ...
The straightforward approach to implementing this is to write a case
expression to recursively evaluate and pattern match, like so:
reduce (Add x y) = case (reduce x, reduce y) of
(I x', I y') -> I $ x' + y'
(x', y') -> Add x' y'
reduce (Mul x y) = case (reduce x, reduce y) of
(I x', I y') -> I $ x' * y'
(x', y') -> Mul x' y'
reduce (And x y) = case (reduce x, reduce y) of
(B x', B y') -> B $ x' && y'
(x', y') -> And x' y'
-- ... and similarly for other cases.
To me, that definition looks somewhat awkward, so I then rewrote the definition using pattern guards, like so:
reduce (Add x y) | I x' <- reduce x
, I y' <- reduce y
= I $ x' + y'
I think this definition looks cleaner compared to the case
expression, but when defining multiple patterns for different constructors, the pattern is repeated multiple times.
reduce (Add x y) | I x' <- reduce x
, I y' <- reduce y
= I $ x' + y'
reduce (Mul x y) | I x' <- reduce x
, I y' <- reduce y
= I $ x' * y'
Noting these repeated patterns, I was hoping there would be some syntax or structure that could cut down on the repetition in the pattern matching. Is there a generally accepted method to simplify these definitions?
Edit: after reviewing the pattern guards, I've realised they don't work as a drop-in replacement here. Although they provide the same result when x
and y
can be reduced to I _
, they do not reduce any values when the pattern guards do not match. I would still like reduce
to simplify subexpressions of Add
et al.
One partial solution, which I've used in a similar situation, is to extract the logic into a "lifting" function that takes a normal Haskell operation and applies it to your language's values. This abstracts over the wrappping/unwrapping and resulting error handling.
The idea is to create two typeclasses for going to and from your custom type, with appropriate error handling. Then you can use these to create a
liftOp
function that could look like this:Then each specific case looks like this:
Which isn't too bad: it isn't overly redundant. It encompasses the information that matters:
Mul
gets mapped to*
, and in the error case we just applyMul
again.You would also need instances for packing and unpacking, but these are useful anyhow. One neat trick is that these can also let you embed functions in your DSL automatically, with an instance of the form
(Extract a, Pack b) => Pack (a -> b)
.I'm not sure this will work exactly for your example, but I hope it gives you a good starting point. You might want to wire additional error handling through the whole thing, but the good news is that most of that gets folded into the definition of
pack
,unpack
andliftOp
, so it's still pretty centralized.I wrote up a similar solution for a related (but somewhat different) problem. It's also a way to handle going back and forth between native Haskell values and an interpreter, but the interpreter is structured differently. Some of the same ideas should still apply though!