Running existing function with non-default option

185 Views Asked by At

The code pasted below from ResourceSelection::hoslem.test performs a Hosmer and Lemeshow goodness of fit test. While investigating why the output that does not agree exactly with that performed by another software (Stata), I found that the difference relates to use of default R argument for the quantile function (type=7). I would like to use this function with a different default for calculation of quantiles (type=6).

FWIW, the reference to the 9 possible methods used by R can be found at:

https://www.amherst.edu/media/view/129116/original/Sample+Quantiles.pdf

The Stata manual for pctile refers to a default method and an 'altdef' method. I found it difficult to map these two methods to corresponding R types.

However,

hoslem.test(yhat, y, type=6)

Produces:

> hl <- hoslem.test(y, yhat, type=6)
Error in hoslem.test(y, yhat, type = 6) : unused argument (type = 6)

Is there a way to run the function below with a non-default argument for the quantile function?

Ie. allows the following line adding ', type=6':

qq <- unique(quantile(yhat, probs = seq(0, 1, 1/g), type=6))

The function in question is:

> ResourceSelection::hoslem.test
function (x, y, g = 10) 
{
    DNAME <- paste(deparse(substitute(x)), deparse(substitute(y)), 
        sep = ", ")
    METHOD <- "Hosmer and Lemeshow goodness of fit (GOF) test"
    yhat <- y
    y <- x
    qq <- unique(quantile(yhat, probs = seq(0, 1, 1/g)))
    cutyhat <- cut(yhat, breaks = qq, include.lowest = TRUE)
    observed <- xtabs(cbind(y0 = 1 - y, y1 = y) ~ cutyhat)
    expected <- xtabs(cbind(yhat0 = 1 - yhat, yhat1 = yhat) ~ 
        cutyhat)
    chisq <- sum((observed - expected)^2/expected)
    PVAL = 1 - pchisq(chisq, g - 2)
    PARAMETER <- g - 2
    names(chisq) <- "X-squared"
    names(PARAMETER) <- "df"
    structure(list(statistic = chisq, parameter = PARAMETER, 
        p.value = PVAL, method = METHOD, data.name = DNAME, observed = observed, 
        expected = expected), class = "htest")
}
3

There are 3 best solutions below

0
On BEST ANSWER

We can modify pieces of functions. Look at the body of the function

as.list(body(hoslem.test))

See that the element we want to modify is the 6th element in the body

[[1]]
`{`

[[2]]
DNAME <- paste(deparse(substitute(x)), deparse(substitute(y)), 
    sep = ", ")

[[3]]
METHOD <- "Hosmer and Lemeshow goodness of fit (GOF) test"

[[4]]
yhat <- y

[[5]]
y <- x

[[6]]
qq <- unique(quantile(yhat, probs = seq(0, 1, 1/g)))

Modify the 6th element to what you want

body(hoslem.test)[[6]] = substitute(qq <- unique(quantile(yhat,
                                    probs = seq(0, 1, 1/g), type = 6)))
0
On

The two answers suggest a wrapper function to flexibly modify hoslem.test

myhoslem.test<-function(x, y, g = 10, mytype = 6){
  body(hoslem.test)[[6]] = substitute(qq <- unique(quantile(yhat,
                                              probs = seq(0, 1, 1/g), type = mytype))) 
  hoslem.test(x,y, g=10)
}
0
On

The easiest way would be to reenter the function as your own:

myhoslem.test<-function(x, y, g = 10, mytype = 6){
    DNAME <- paste(deparse(substitute(x)), deparse(substitute(y)), 
        sep = ", ")
    METHOD <- "Hosmer and Lemeshow goodness of fit (GOF) test"
    yhat <- y
    y <- x
    qq <- unique(quantile(yhat, probs = seq(0, 1, 1/g), type = mytype))
    cutyhat <- cut(yhat, breaks = qq, include.lowest = TRUE)
    observed <- xtabs(cbind(y0 = 1 - y, y1 = y) ~ cutyhat)
    expected <- xtabs(cbind(yhat0 = 1 - yhat, yhat1 = yhat) ~ 
        cutyhat)
    chisq <- sum((observed - expected)^2/expected)
    PVAL = 1 - pchisq(chisq, g - 2)
    PARAMETER <- g - 2
    names(chisq) <- "X-squared"
    names(PARAMETER) <- "df"
    structure(list(statistic = chisq, parameter = PARAMETER, 
        p.value = PVAL, method = METHOD, data.name = DNAME, observed = observed, 
        expected = expected), class = "htest")
}

The key change here is :

qq <- unique(quantile(yhat, probs = seq(0, 1, 1/g), type = mytype))

and allowing mytype as a argument to the function with default as 6