Running exported YoloV8 model with Openvino Runtime

259 Views Asked by At

I am having trouble with running a YoloV8 model exported for Openvino in the Openvino runtime, it runs but it is not returning what I am expecting. If I run the exported model using YOLO I get something that looks correct, whereas when I run with the Openvino Core I get a completely different and incorrect result. I am trying to us Openvino runtime as I want to use the model with the Openvino Model Server.

This is the test YOLO code including export and prediction:

from shutil import copyfile
from ultralytics import YOLO

model = YOLO("best.pt")
model.predict("test.jpg", save=True)

copyfile("test.jpg", "test_openvino.jpg")
model.export(format="openvino", dynamic=True)

openvino_model = YOLO("best_openvino_model/")
openvino_model.predict("test_openvino.jpg", save=True)

This is the test Openvino runtime:

import cv2
import numpy as np
from openvino.runtime import Core

ie = Core()

model = ie.read_model(model="best_openvino_model/best.xml")
compiled_model = ie.compile_model(model=model, device_name="CPU")

input_layer_ir = compiled_model.input(0)
output_layer_ir = compiled_model.output()

image = cv2.imread("test.jpg")
# N, C, H, W = input_layer_ir.shape
N, C, H, W = 1, 1, 480, 480
resized_image = cv2.resize(image, (W, H))
input_image = np.expand_dims(resized_image.transpose(2, 0, 1), 0)
output = compiled_model([input_image])[output_layer_ir]
output = cv2.transpose(output[0])

boxes = []
scores = []
class_ids = []

for row in output:
    # Each row is [x, y, width, height, probability class 0, probability class 1, ...]
    classes_scores = row[4:]
    (_min_score, max_score, _min_class_loc, (_x, max_class_index)) = cv2.minMaxLoc(classes_scores)
    if max_score >= 0.25:
        box = [row[0] - (0.5 * row[2]), row[1] - (0.5 * row[3]), row[2], row[3]]
        boxes.append(box)
        scores.append(max_score)
        class_ids.append(max_class_index)

[height, width, _] = image.shape
length = max((height, width))
scale = length/480

# Apply NMS (Non-maximum suppression)
RESULT_BOXES = cv2.dnn.NMSBoxes(boxes, scores, 0.5, 0.6, 0.5)
for index in RESULT_BOXES:
    box = boxes[index]
    x, y = round(box[0] * scale), round(box[1] * scale)
    x_plus_w, y_plus_h = round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale)
    image = cv2.rectangle(cv2.UMat(image), (x, y), (x_plus_w, y_plus_h), (0, 0, 255), 8)
    image = cv2.putText(cv2.UMat(image), f"handgun {round(scores[index], 2)}", (x - 10, y - 12),
                        cv2.FONT_HERSHEY_SIMPLEX, 3, (0,0,255), 8)

cv2.imwrite("test_openvino_runtime.jpg", image)

YoloV8 model: https://github.com/mattmysell/test/blob/main/best.pt Test image: https://github.com/mattmysell/test/blob/main/test.jpg

Here are the python libraries I am using: ultralytics==8.0.196 onnx==1.15.0 onnxruntime==1.16.2 openvino==2023.2.0 openvino-dev==2023.2.0

I have tried varying the export parameters and the image adjustments for feeding into the Openvino Runtime but I seem to always get the same result, it could also be in how I am processing the output.

1

There are 1 best solutions below

0
On

Realised my mistake was using np.expand_dims instead of cv2.dnn.blobFromImage, here is the working code for anyone with a similar issue:

import cv2
from openvino.runtime import Core

ie = Core()

model = ie.read_model(model="best_openvino_model/best.xml")
compiled_model = ie.compile_model(model=model, device_name="CPU")

input_layer_ir = compiled_model.input(0)
output_layer_ir = compiled_model.output()

image = cv2.imread("../test.jpg")
# N, C, H, W = input_layer_ir.shape
N, C, H, W = 1, 1, 480, 480
# resized_image = cv2.resize(image, (W, H))
# input_image = np.expand_dims(resized_image.transpose(2, 0, 1), 0)
input_image = cv2.dnn.blobFromImage(resized_image, 1/255, (W, H), [0,0,0], 1, crop=False)
output = compiled_model([input_image])[output_layer_ir]
output = cv2.transpose(output[0])

boxes = []
scores = []
class_ids = []

for row in output:
    # Each row is [x, y, width, height, probability class 0, probability class 1, ...]
    classes_scores = row[4:]
    (_min_score, max_score, _min_class_loc, (_x, max_class_index)) = cv2.minMaxLoc(classes_scores)
    if max_score >= 0.25:
        box = [row[0] - (0.5 * row[2]), row[1] - (0.5 * row[3]), row[2], row[3]]
        boxes.append(box)
        scores.append(max_score)
        class_ids.append(max_class_index)

[height, width, _] = image.shape
length = max((height, width))
scale = length/480

# Apply NMS (Non-maximum suppression)
RESULT_BOXES = cv2.dnn.NMSBoxes(boxes, scores, 0.5, 0.6, 0.5)
for index in RESULT_BOXES:
    box = boxes[index]
    x, y = round(box[0] * scale), round(box[1] * scale)
    x_plus_w, y_plus_h = round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale)
    image = cv2.rectangle(cv2.UMat(image), (x, y), (x_plus_w, y_plus_h), (0, 0, 255), 8)
    image = cv2.putText(cv2.UMat(image), f"handgun {round(scores[index], 2)}", (x - 10, y - 12),
                        cv2.FONT_HERSHEY_SIMPLEX, 3, (0,0,255), 8)

makedirs("runs/openvino", exist_ok=True)
cv2.imwrite("test_openvino_runtime.jpg", image)