I'm working on a data with milk composition analysis and I want to analyze relation between them. I have 270 observations and a categorical variable "Primimulti" with 2 factors. I created a regression model with nlme which allow me to add random effect and correlation structure. As you can see below, I also ad a polynomial to the temporal variable.
lm_corCAR1<-lme(lactom ~ 1 + K + Na + Cl + LgSCC + Primimulti * poly(Jplus,degree=5),
random = ~ 1 | vache,
corr = corCAR1(form= ~ Jplus | vache),
method="REML",
na.action=na.omit,
data=data_lait)
I obtained these results:
summary(lm_corCAR1)
Linear mixed-effects model fit by REML
Data: data_lait
AIC BIC logLik
-362.6679 -327.0227 191.3339
Random effects:
Formula: ~1 | vache
(Intercept) Residual
StdDev: 0.08239433 0.09041495
Correlation Structure: Continuous AR(1)
Formula: ~Jplus | vache
Parameter estimate(s):
Phi
0.2
Fixed effects: lactom ~ 1 + K + Na + Cl + LgSCC + Primimulti + Jplus
Value Std.Error DF t-value p-value
(Intercept) 6.042503 0.18637710 233 32.42084 0.0000
K -0.000381 0.00009654 233 -3.94676 0.0001
Na -0.000444 0.00014290 233 -3.10745 0.0021
Cl -0.000233 0.00005300 233 -4.40261 0.0000
LgSCC -0.025792 0.00481912 233 -5.35193 0.0000
Primimultiprimi 0.008316 0.03783433 28 0.21980 0.8276
Jplus 0.000341 0.00009325 233 3.65468 0.0003
Correlation:
(Intr) K Na Cl LgSCC Prmmlt
K -0.928
Na -0.274 0.033
Cl 0.040 -0.179 -0.376
LgSCC -0.073 0.127 -0.256 -0.053
Primimultiprimi -0.368 0.184 0.485 -0.240 -0.035
Jplus -0.520 0.555 -0.104 -0.082 0.116 0.044
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.601914552 -0.588982667 -0.001149027 0.652410609 3.296120444
Number of Observations: 268
Number of Groups: 30
But the DF are very high unless for Primimulti variable.
I tried to use satterthwaite to corrige the method of calculation for ddl but it doesn't change anything to the df:
model_parameters(lm_corCAR1, df_method = "satterthwaite")
# Fixed Effects
Parameter | Coefficient | SE | 95% CI | t | df | p
-----------------------------------------------------------------------------------
(Intercept) | 6.04 | 0.19 | [ 5.68, 6.41] | 32.42 | 233 | < .001
K | -3.81e-04 | 9.65e-05 | [ 0.00, 0.00] | -3.95 | 233 | < .001
Na | -4.44e-04 | 1.43e-04 | [ 0.00, 0.00] | -3.11 | 233 | 0.002
Cl | -2.33e-04 | 5.30e-05 | [ 0.00, 0.00] | -4.40 | 233 | < .001
LgSCC | -0.03 | 4.82e-03 | [-0.04, -0.02] | -5.35 | 233 | < .001
Primimulti [primi] | 8.32e-03 | 0.04 | [-0.07, 0.09] | 0.22 | 28 | 0.828
Jplus | 3.41e-04 | 9.32e-05 | [ 0.00, 0.00] | 3.65 | 233 | < .001
# Random Effects
Parameter | Coefficient
-----------------------------------
SD (Intercept: vache) | 0.08
SD (Residual) | 0.09
Uncertainty intervals (equal-tailed) and p-values (two-tailed) computed using a Wald t-distribution
approximation.
I don't know what to do. Can you help me?
Thank you!