I have the following traits for parsing that give file positions for the beginning and end of the object:
case class FilePosn(lineNum :Int, tabs: Int, spaces: Int, fileName: String)
{/*code omitted*/}
trait PosnEnds
{
def startPosn: FilePosn
def endPosn: FilePosn
def multiLine: Boolean = startPosn.lineNum != endPosn.lineNum
def OneLine: Boolean = startPosn.lineNum == endPosn.lineNum
def indent: Int = startPosn.tabs
def startLine: Int = startPosn.lineNum
def endLine: Int = endPosn.lineNum
}
object FilePosnVoid extends FilePosn(0, 0, 0, "There is no File position")
{ override def posnString(indentSize: Int): String = "No File Posn: " }
In the companion object I create an implicit, so sequences of PosnEnds are themselves implicitly PosnEnds:
object PosnEnds
{
implicit class ImpPosnEndsSeq[A <: PosnEnds](thisSeq: Seq[A]) extends PosnEnds
{
override def startPosn: FilePosn = thisSeq.fHead(FilePosnVoid, (h, t) => h.startPosn)
override def endPosn: FilePosn = thisSeq.fLast(FilePosnVoid, _.endPosn)
}
}
Is there anyway to use implicits recursively so a Seq[Seq[A]] and a Seq[Seq[Seq[A]]] etc will be implicitly converted to a PosnEnds trait? In practice I probably won't need huge levels of depth, but it would be nice to use an elegant solution that implicitly converted Seq of arbitrary depth.
Currently for depth 2 I'm using:
implicit class ImpPosnEndsSeqSeq[A <: PosnEnds](thisSeq: Seq[Seq[A]]) extends PosnEnds
{
override def startPosn: FilePosn = thisSeq.fHead(FilePosnVoid, (h, t) => h.startPosn)
override def endPosn: FilePosn = thisSeq.fLast(FilePosnVoid, _.endPosn)
}
Yes. You could do it with typeclass mediator.
I allow myself to do some minor changes in your example to make it more reproducible. Inside
object PosnEnds
I haveThing you need first is some simple typeclass like
Now you can introduce canonical elements for induction:
Finally you can define your implicit conversion
From this point
compiles and runs succesfully
Major difference with your attempt: we dont wait implicit conversion to stack. Implicit resolution can be recursive, but implicit conversion can not.
So we are using some value-less type, i.e something that could be achieved using only implicit arguments which means could be constructed by the compiler. And only then projecting this logic to the concrete value.