I am trying to extract a signature from a document using some code that I found on GIT.
The error is as follows: "ValueError: Image RGB array must be uint8 or floating point; found int32"
No matter what image I use, I get the error. I am a novice at image extraction so any help would be appreciated.
The code used:
def extract_signature(source_image):
"""Extract signature from an input image.
Parameters
----------
source_image : numpy ndarray
The pinut image.
Returns
-------
numpy ndarray
An image with the extracted signatures.
"""
# read the input image
img = source_image
img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)[1] # ensure binary
# connected component analysis by scikit-learn framework
blobs = img > img.mean()
blobs_labels = measure.label(blobs, background=1)
# image_label_overlay = label2rgb(blobs_labels, image=img)
fig, ax = plt.subplots(figsize=(10, 6))
'''
# plot the connected components (for debugging)
ax.imshow(image_label_overlay)
ax.set_axis_off()
plt.tight_layout()
plt.show()
'''
the_biggest_component = 0
total_area = 0
counter = 0
average = 0.0
for region in regionprops(blobs_labels):
if (region.area > 10):
total_area = total_area + region.area
counter = counter + 1
# print region.area # (for debugging)
# take regions with large enough areas
if (region.area >= 250):
if (region.area > the_biggest_component):
the_biggest_component = region.area
average = (total_area/counter)
print("the_biggest_component: " + str(the_biggest_component))
print("average: " + str(average))
# experimental-based ratio calculation, modify it for your cases
# a4_small_size_outliar_constant is used as a threshold value to remove connected outliar connected pixels
# are smaller than a4_small_size_outliar_constant for A4 size scanned documents
a4_small_size_outliar_constant = ((average/constant_parameter_1)*constant_parameter_2)+constant_parameter_3
print("a4_small_size_outliar_constant: " + str(a4_small_size_outliar_constant))
# experimental-based ratio calculation, modify it for your cases
# a4_big_size_outliar_constant is used as a threshold value to remove outliar connected pixels
# are bigger than a4_big_size_outliar_constant for A4 size scanned documents
a4_big_size_outliar_constant = a4_small_size_outliar_constant*constant_parameter_4
print("a4_big_size_outliar_constant: " + str(a4_big_size_outliar_constant))
# remove the connected pixels are smaller than a4_small_size_outliar_constant
pre_version = morphology.remove_small_objects(blobs_labels, a4_small_size_outliar_constant)
# remove the connected pixels are bigger than threshold a4_big_size_outliar_constant
# to get rid of undesired connected pixels such as table headers and etc.
component_sizes = np.bincount(pre_version.ravel())
too_small = component_sizes > (a4_big_size_outliar_constant)
too_small_mask = too_small[pre_version]
pre_version[too_small_mask] = 0
# save the the pre-version which is the image is labelled with colors
# as considering connected components
plt.imsave('pre_version.png', pre_version)
# read the pre-version
img = cv2.imread('pre_version.png', 0)
# ensure binary
img = cv2.threshold(img, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
# save the the result
# cv2.imwrite("output.png", img)
return img
If anyone has any suggestions on tips on what to change or improve, that would be greatly appreciated.