Edward example
As Edward
is deprecated and requires an older version of TensorFlow one can create a dedicated virtual environment for the following example
$ python3 --version
Python 3.6.8
$ python3 -m venv edward
$ source edward/bin/activate
(edward) $ pip3 install --upgrade pip setuptools wheel
(edward) $ cat edward.txt
tensorflow==1.7
edward~=1.3
scipy~=1.2
pandas~=0.24
matplotlib~=3.0
(edward) $ pip3 install -r edward.txt
I have a very simple minimal working example of using Hamiltonian Monte Carlo with Edward called edward_old.py
#!/usr/bin/env python3
import numpy as np
import scipy.stats
import tensorflow as tf
import edward as ed
import pandas as pd
import matplotlib.pyplot as plt
def generate_samples(data, n_samples):
# Pick initial point for MCMC chains based on the data
low, med, high = np.percentile(data, (16, 50, 84))
mu_init = np.float32(med)
t_init = np.float32(np.log(0.5 * (high - low)))
# Build a very simple model
mu = ed.models.Uniform(-1.0, 1.0)
t = ed.models.Uniform(*np.log((0.05, 1.0), dtype=np.float32))
X = ed.models.Normal(
loc=tf.fill(data.shape, mu), scale=tf.fill(data.shape, tf.exp(t))
)
# Emperical samples of a sclar
q_mu = ed.models.Empirical(params=tf.Variable(tf.fill((n_samples,), mu_init)))
q_t = ed.models.Empirical(params=tf.Variable(tf.fill((n_samples,), t_init)))
# Run inference using HMC to generate samples.
with tf.Session() as sess:
inference = ed.HMC({mu: q_mu, t: q_t}, data={X: data})
inference.run(step_size=0.01, n_steps=10)
mu_samples, t_samples = sess.run([q_mu.params, q_t.params])
return mu_samples, t_samples
def visualize(samples, mu_grid, sigma_grid):
fig, ax = plt.subplots(1, 1, figsize=(6, 5))
ax.scatter(samples['mu'], samples['sigma'], s=5, lw=0, c='black')
ax.set_xlim(mu_grid[0], mu_grid[-1])
ax.set_ylim(sigma_grid[0], sigma_grid[-1])
ax.set_title('Edward')
ax.set_xlabel('$\mu$')
ax.set_ylabel('$\sigma$')
plt.savefig('edward_old.pdf')
def main():
np.random.seed(0)
tf.set_random_seed(0)
# Generate pseudodata from draws from a single normal distribution
dist_mean = 0.0
dist_std = 0.5
n_events = 5000
toy_data = scipy.stats.norm.rvs(dist_mean, dist_std, size=n_events)
mu_samples, t_samples = generate_samples(toy_data, n_events)
samples = pd.DataFrame({'mu': mu_samples, 'sigma': np.exp(t_samples)})
n_grid = 50
mu_grid = np.linspace(*np.percentile(mu_samples, (0.5, 99.5)), n_grid)
sigma_grid = np.linspace(*np.exp(np.percentile(t_samples, (0.5, 99.5))), n_grid)
visualize(samples, mu_grid, sigma_grid)
if __name__ == '__main__':
main()
which produces the plot below through
(edward) $ python3 edward_old.py
Edward2 example
However, when I try to replicate it using TensorFlow Probability and Edward2 with the following environment
$ python3 --version
Python 3.6.8
$ python3 -m venv tfp-edward2
$ source tfp-edward2/bin/activate
(tfp-edward2) $ pip3 install --upgrade pip setuptools wheel
(tfp-edward2) $ cat tfp-edward2.txt
tensorflow~=1.13
tensorflow-probability~=0.6
scipy~=1.2
pandas~=0.24
matplotlib~=3.0
(tfp-edward2) $ pip3 install -r tfp-edward2.txt
and the following changes from edward_old.py
's generate_samples
in a file called edward2.py
#!/usr/bin/env python3
import numpy as np
import scipy.stats
import tensorflow as tf
import tensorflow_probability as tfp
from tensorflow_probability import edward2 as ed
import pandas as pd
import matplotlib.pyplot as plt
def generate_samples(data, n_samples):
# Pick initial point for MCMC chains based on the data
low, med, high = np.percentile(data, (16, 50, 84))
mu_init = np.float32(med)
t_init = np.float32(np.log(0.5 * (high - low)))
def model(data_shape):
mu = ed.Uniform(
low=tf.fill(data_shape, -1.0), high=tf.fill(data_shape, 1.0), name="mu"
)
t = ed.Uniform(
low=tf.log(tf.fill(data_shape, 0.05)),
high=tf.log(tf.fill(data_shape, 1.0)),
name="t",
)
x = ed.Normal(loc=mu, scale=tf.exp(t), name="x")
return x
log_joint = ed.make_log_joint_fn(model)
def target_log_prob_fn(mu, t):
"""Target log-probability as a function of states."""
return log_joint(data.shape, mu=mu, t=t, x=data)
step_size = tf.get_variable(
name='step_size',
initializer=0.01,
use_resource=True, # For TFE compatibility
trainable=False,
)
num_burnin_steps = 1000
hmc_kernel = tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=target_log_prob_fn,
num_leapfrog_steps=5,
step_size=step_size,
step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(
num_adaptation_steps=int(num_burnin_steps * 0.8)
),
)
# How should these be done?
q_mu = tf.random_normal(data.shape, mean=mu_init)
q_t = tf.random_normal(data.shape, mean=t_init)
states, kernel_results = tfp.mcmc.sample_chain(
num_results=n_samples,
current_state=[q_mu, q_t],
kernel=hmc_kernel,
num_burnin_steps=num_burnin_steps,
)
# Initialize all constructed variables.
init_op = tf.global_variables_initializer()
# Run the inference using HMC to generate samples
with tf.Session() as sess:
init_op.run()
states_, results_ = sess.run([states, kernel_results])
mu_samples, t_samples = states_[0][0], states_[1][0]
return mu_samples, t_samples
Running with
(tfp-edward2) $ python3 edward2.py
shows that there are some obvious problems. I don't think I am formulating the equivalent of the ed.models.Empirical
correctly, so if there are thoughts on that or anything else I am doing wrong that would be great.
I have tried to follow the "Upgrading from Edward to Edward2" examples already, but I haven't been able to understand them enough to transfer from the example used there of the deep_exponential_family
model to this example.
The problem I created for myself was totally messing up the shapes of my distributions. What I failed to properly grasp at first was that the
current_state
of mytfp.mcmc.sample_chain
should have been scalars (shape==()
) that represented the initial positions of the chains. Once I realized this, then it became clear that those positions,q_mu
andq_t
had quite the wrong shape and should be the mean of samples from the positions determined from the dataAs these values are scalars, then I had been creating the shapes of my model wrong as well. I had been creating samples of my random variables that were the same shape as my data mistakenly thinking that this was just moving the shaping of
x
to the shape ofmu
andt
. Of coursemu
andt
are meant to be scalar random variables from their respective Uniform distributions which then are the parameters forx
's Normal distribution from whichdata.shape
samples are drawn.Once this is done the only thing left to do is to properly access the states now
and that produces the image below with
which is a good match for the original using
Edward
.The fully corrected script is below