I have the following problem:
Express the following boolean expressions as sums of products and simplify as much as possible using a Karnaugh map
I drew the Karnaugh map and then placed my values in the table as true (First one, B non D meaning 10 and non B and D meaning 01) We then have the following values: 0100,0110,1100,1110 (as A and C can be either 0 or 1). So we get:
We notice we only have one group (which is circled in blue) and then we have:
0100
0110
1100
1110
We see that the only variables that don't modify their values are B and D and therefore we get the following simplified version:
B non D
But this is the answer only for the expression in brackets, without the minus. Any ideas how I can solve it in case I have a minus in front of the expression? How does it change my expression?
My second question is how I should solve it when I have a double negation like this one
When mapping does the first one mean 1111 and the rest 0101, 1101, 0101 and then I solve it the same way? Any ideas? Thank you!