So I had to write an algorithm for the Simpson's double integral so I can find the answer in a much faster manner. I had a guide that showed the steps to follow to write this program. After following this guide and running it in netbeans, I found out that the values coming out of the program where not really close to the real answer. This is the code that I written in java:
//INPUT
double a = 0,b = 1; // Endpoints
int m = 8,n = 4;
double K1 = 0, K2 = 0, K3 = 0;
//OUPUT
//Step 1
double h = (b - a) / n;
double j1 = 0; //End terms
double j2 = 0; //Even terms
double j3 = 0; //Odd terms
//Step 2
for(int i = 0; i <= n; i++){
//Step 3
double x = a + (i * h);
double hX = (d(x) - c(x)) / m;
K1 = f(x, c(x)) + f(x, d(x)); // End terms
//Step 4
for (int j = 1; j < (m-1); j++){
//Step 5
double y = c(x) + (j * hX);
double q = f(x,y);
//Step 6
if (j % 2 == 0){
K2 = K2 + q;
}
else
K3 = K3 + q;
}
//Step 7
double l = (K1 + (2*K2) + (4*K3)) * (hX / 3);
//Step 8
if (i == 0 || i == n)
j1 = j1 + l;
else if (i % 2 == 0)
j2 = j2 + l;
else
j3 = j3 + l;
}
double j = h * (j1 + (2 * j2) + (4 * j3)) / 3;
System.out.println("j = " + j);
}
public static double c(double x){
return x;
}
public static double d(double x){
return 2 * x;
}
public static double f(double x, double y){
return (Math.pow(y, 2) + Math.pow(x, 3));
}
I tried debugging the program several times but I haven't yet found why I am encountering this mistake. If there's any mistake that you find in my code please let me know to see if it fixes it. For the given example, I am getting the value of 0.9069281684027777 instead of having the correct value which is 0.7838542. Thank you for your help. You can also see the guide that I followed to be able to create this program.
I did not check the math, the large error seems to indicate an error in the algorithm implemented. The for-bounds are dubious. And floating point errors exist.
Instead of multiplying a fraction by a running index (which would multiply the floating point approximation error in the fraction), better do:
Instead:
do
or
The boundary n being a bit unclear to me.