I know that one would evaluate the AUC of sklearn.svm.SVC by passing in the probability=True option into the constructor, and having the SVM predict probabilities, but I'm not sure how to evaluate sklearn.svm.LinearSVC's AUC. Does anyone have any idea how?
I'd like to use LinearSVC over SVC because LinearSVC seems to train faster on data with many attributes.
You can use the CalibratedClassifierCV class to extract the probabilities. Here is an example with code.